Abajian Aaron, Murali Nikitha, Savic Lynn Jeanette, Laage-Gaupp Fabian Max, Nezami Nariman, Duncan James S, Schlachter Todd, Lin MingDe, Geschwind Jean-François, Chapiro Julius
Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520.
Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520; Department of Diagnostic and Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany.
J Vasc Interv Radiol. 2018 Jun;29(6):850-857.e1. doi: 10.1016/j.jvir.2018.01.769. Epub 2018 Mar 14.
To use magnetic resonance (MR) imaging and clinical patient data to create an artificial intelligence (AI) framework for the prediction of therapeutic outcomes of transarterial chemoembolization by applying machine learning (ML) techniques.
This study included 36 patients with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization. The cohort (age 62 ± 8.9 years; 31 men; 13 white; 24 Eastern Cooperative Oncology Group performance status 0, 10 status 1, 2 status 2; 31 Child-Pugh stage A, 4 stage B, 1 stage C; 1 Barcelona Clinic Liver Cancer stage 0, 12 stage A, 10 stage B, 13 stage C; tumor size 5.2 ± 3.0 cm; number of tumors 2.6 ± 1.1; and 30 conventional transarterial chemoembolization, 6 with drug-eluting embolic agents). MR imaging was obtained before and 1 month after transarterial chemoembolization. Image-based tumor response to transarterial chemoembolization was assessed with the use of the 3D quantitative European Association for the Study of the Liver (qEASL) criterion. Clinical information, baseline imaging, and therapeutic features were used to train logistic regression (LR) and random forest (RF) models to predict patients as treatment responders or nonresponders under the qEASL response criterion. The performance of each model was validated using leave-one-out cross-validation.
Both LR and RF models predicted transarterial chemoembolization treatment response with an overall accuracy of 78% (sensitivity 62.5%, specificity 82.1%, positive predictive value 50.0%, negative predictive value 88.5%). The strongest predictors of treatment response included a clinical variable (presence of cirrhosis) and an imaging variable (relative tumor signal intensity >27.0).
Transarterial chemoembolization outcomes in patients with HCC may be predicted before procedures by combining clinical patient data and baseline MR imaging with the use of AI and ML techniques.
运用磁共振(MR)成像和临床患者数据,通过应用机器学习(ML)技术创建一个人工智能(AI)框架,用于预测经动脉化疗栓塞的治疗效果。
本研究纳入了36例接受经动脉化疗栓塞治疗的肝细胞癌(HCC)患者。该队列患者年龄为62±8.9岁;男性31例;白人13例;东部肿瘤协作组(Eastern Cooperative Oncology Group)体能状态0级24例、1级10例、2级2例;Child-Pugh分级A期31例、B期4例、C期1例;巴塞罗那临床肝癌(Barcelona Clinic Liver Cancer)分期0期1例、A期12例、B期10例、C期13例;肿瘤大小5.2±3.0 cm;肿瘤数量2.6±1.1个;其中30例行传统经动脉化疗栓塞,6例行载药栓塞剂治疗。在经动脉化疗栓塞前及术后1个月进行MR成像检查。采用三维定量欧洲肝脏研究协会(qEASL)标准评估基于图像的经动脉化疗栓塞肿瘤反应。利用临床信息、基线成像和治疗特征训练逻辑回归(LR)模型和随机森林(RF)模型,以根据qEASL反应标准预测患者为治疗反应者或无反应者。每个模型的性能通过留一法交叉验证进行验证。
LR模型和RF模型预测经动脉化疗栓塞治疗反应的总体准确率均为78%(敏感性62.5%,特异性82.1%,阳性预测值50.0%,阴性预测值88.5%)。治疗反应的最强预测因素包括一个临床变量(肝硬化的存在)和一个成像变量(相对肿瘤信号强度>27.0)。
通过使用AI和ML技术将临床患者数据与基线MR成像相结合,可在术前预测HCC患者经动脉化疗栓塞的结果。