Suppr超能文献

驱动转录应激反应的分子机制。

Molecular mechanisms driving transcriptional stress responses.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.

出版信息

Nat Rev Genet. 2018 Jun;19(6):385-397. doi: 10.1038/s41576-018-0001-6.

Abstract

Proteotoxic stress, that is, stress caused by protein misfolding and aggregation, triggers the rapid and global reprogramming of transcription at genes and enhancers. Genome-wide assays that track transcriptionally engaged RNA polymerase II (Pol II) at nucleotide resolution have provided key insights into the underlying molecular mechanisms that regulate transcriptional responses to stress. In addition, recent kinetic analyses of transcriptional control under heat stress have shown how cells 'prewire' and rapidly execute genome-wide changes in transcription while concurrently becoming poised for recovery. The regulation of Pol II at genes and enhancers in response to heat stress is coupled to chromatin modification and compartmentalization, as well as to co-transcriptional RNA processing. These mechanistic features seem to apply broadly to other coordinated genome-regulatory responses.

摘要

蛋白质毒性应激,即由蛋白质错误折叠和聚集引起的应激,会触发基因和增强子上转录的快速和全局重编程。在核苷酸分辨率上跟踪转录相关 RNA 聚合酶 II(Pol II)的全基因组分析为调节应激转录反应的基础分子机制提供了重要的见解。此外,最近对热应激下转录控制的动力学分析表明,细胞如何“预先布线”并快速执行全基因组转录变化,同时为恢复做好准备。Pol II 在基因和增强子上对热应激的调节与染色质修饰和区室化以及共转录 RNA 加工相关。这些机制特征似乎广泛适用于其他协调的基因组调节反应。

相似文献

1
Molecular mechanisms driving transcriptional stress responses.
Nat Rev Genet. 2018 Jun;19(6):385-397. doi: 10.1038/s41576-018-0001-6.
2
Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions.
Mol Cell. 2021 Apr 15;81(8):1715-1731.e6. doi: 10.1016/j.molcel.2021.03.007. Epub 2021 Mar 29.
3
Global SUMOylation on active chromatin is an acute heat stress response restricting transcription.
Genome Biol. 2015 Jul 28;16(1):153. doi: 10.1186/s13059-015-0717-y.
4
Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations.
Nature. 2013 Dec 12;504(7479):306-310. doi: 10.1038/nature12716. Epub 2013 Nov 10.
5
New insights into transcriptional reprogramming during cellular stress.
J Cell Sci. 2019 Nov 1;132(21):jcs238402. doi: 10.1242/jcs.238402.
7
The heat shock response: A case study of chromatin dynamics in gene regulation.
Biochem Cell Biol. 2013 Feb;91(1):42-8. doi: 10.1139/bcb-2012-0075. Epub 2013 Feb 13.
8
Transcriptional response to stress is pre-wired by promoter and enhancer architecture.
Nat Commun. 2017 Aug 15;8(1):255. doi: 10.1038/s41467-017-00151-0.
9
SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape.
Mol Cell. 2021 Nov 4;81(21):4425-4439.e6. doi: 10.1016/j.molcel.2021.08.029. Epub 2021 Sep 16.

引用本文的文献

1
Core Perturbomes of and Using a Machine Learning Approach.
Pathogens. 2025 Aug 7;14(8):788. doi: 10.3390/pathogens14080788.
2
eNRSA: a faster and more powerful approach for nascent transcriptome analysis.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf071.
3
HSF1 remodels mitochondrial biogenesis and function in cancer cells via TIMM17A.
bioRxiv. 2025 May 14:2025.05.12.653547. doi: 10.1101/2025.05.12.653547.
4
Heat stress response in the cave nectar bat Eonycteris spelaea differs from that of Mus musculus.
Commun Biol. 2025 May 26;8(1):811. doi: 10.1038/s42003-025-08224-3.
6
Integrator loss leads to dsRNA formation that triggers the integrated stress response.
Cell. 2025 Jun 12;188(12):3184-3201.e21. doi: 10.1016/j.cell.2025.03.025. Epub 2025 Apr 14.
7
Feeling the force from within - new tools and insights into nuclear mechanotransduction.
J Cell Sci. 2025 Mar 1;138(5). doi: 10.1242/jcs.263615. Epub 2025 Mar 10.
8
9
Beyond the heat shock pathway: Heat stress responses in Drosophila development.
Dev Biol. 2025 Feb;518:53-60. doi: 10.1016/j.ydbio.2024.11.003. Epub 2024 Nov 16.
10
MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202403198. Epub 2024 Oct 14.

本文引用的文献

1
Enhancer transcription: what, where, when, and why?
Genes Dev. 2018 Jan 1;32(1):1-3. doi: 10.1101/gad.311605.118.
2
The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription.
Genes Dev. 2018 Jan 1;32(1):42-57. doi: 10.1101/gad.308619.117. Epub 2018 Jan 29.
3
Widespread transcriptional pausing and elongation control at enhancers.
Genes Dev. 2018 Jan 1;32(1):26-41. doi: 10.1101/gad.309351.117. Epub 2018 Jan 29.
4
YY1 Is a Structural Regulator of Enhancer-Promoter Loops.
Cell. 2017 Dec 14;171(7):1573-1588.e28. doi: 10.1016/j.cell.2017.11.008. Epub 2017 Dec 7.
5
The HSF1-PARP13-PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis.
Nat Commun. 2017 Nov 21;8(1):1638. doi: 10.1038/s41467-017-01807-7.
6
Targeting protein quality control pathways in breast cancer.
BMC Biol. 2017 Nov 16;15(1):109. doi: 10.1186/s12915-017-0449-4.
7
SUMO modification system facilitates the exchange of histone variant H2A.Z-2 at DNA damage sites.
Nucleus. 2018 Jan 1;9(1):87-94. doi: 10.1080/19491034.2017.1395543. Epub 2017 Dec 14.
10
CDK9-dependent RNA polymerase II pausing controls transcription initiation.
Elife. 2017 Oct 10;6:e29736. doi: 10.7554/eLife.29736.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验