Image Processing Center, School of Astronautics, Beihang University, Xueyuan Road No.37, Beijing, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
Int J Comput Assist Radiol Surg. 2018 Jul;13(7):967-975. doi: 10.1007/s11548-018-1733-7. Epub 2018 Mar 19.
Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach.
The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result.
We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net.
Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.
从计算机断层扫描(CT)图像中自动分割膀胱在临床实践中是非常需要的。这是一项具有挑战性的任务,因为膀胱在 CT 图像中通常会出现较大的外观变化和较低的软组织对比度。在这项研究中,我们提出了一种基于深度学习的方法,该方法涉及卷积神经网络(CNN)和 3D 全连接条件随机场递归神经网络(CRF-RNN),以实现精确的膀胱分割。我们还提出了一种新的预处理方法,称为双通道预处理,以进一步提高我们方法的分割性能。
所提出的方法如下工作:首先,我们将所提出的预处理方法应用于输入的 CT 图像,并获得由 CT 图像和增强的膀胱密度图组成的双通道图像。其次,我们利用 CNN 对双通道图像上的粗略体素级膀胱评分图进行预测。最后,一个 3D 全连接 CRF-RNN 细化粗略的膀胱评分图并生成最终精细定位的分割结果。
我们在临床数据集上将我们的方法与最先进的 V 网络进行了比较。结果表明,我们的方法在分割精度上优于 V 网络,具有显著的优势。我们的方法的 Dice 相似系数(92.24%)比 V 网络高 8.12%。此外,与 V 网络相比,我们的方法生成的膀胱概率图具有更清晰的边界和更准确的定位。
我们的方法在临床数据上的分割精度优于最先进的方法。双通道处理和 3D 全连接 CRF-RNN 都有助于这一改进。由 CNN 和 3D CRF-RNN 组成的联合深度网络也优于与 CNN 没有关联的作为后处理方法的 CRF 模型系统。