Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA, United States of America.
Bioinspir Biomim. 2018 May 8;13(4):046002. doi: 10.1088/1748-3190/aab801.
In this work, a multi-objective optimization framework is developed for optimizing low Reynolds number ([Formula: see text]) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying [Formula: see text] and Rossby number ([Formula: see text], or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing the lift coefficient and minimizing the power coefficient in dimensionless space, explicitly revealing the trade-off between lift generation and power consumption. The results indicate that revolving wings are more efficient when the required average lift coefficient [Formula: see text] is low (<1 for [Formula: see text] and <1.6 for [Formula: see text]), while flapping wings are more efficient in achieving higher [Formula: see text]. With the dimensionless power loading as the single-objective performance measure to be maximized, rotary flight is more efficient than flapping wings for [Formula: see text] regardless of the amount of energy storage assumed in the flapping wing actuation mechanism, while flapping flight is more efficient for [Formula: see text]. It is observed that wings with low [Formula: see text] perform better when higher [Formula: see text] is needed, whereas higher [Formula: see text] cases are more efficient at [Formula: see text] regions. However, for the selected geometry and [Formula: see text], the efficiency is weakly dependent on [Formula: see text] when the dimensionless power loading is maximized.
在这项工作中,开发了一种多目标优化框架,用于优化低雷诺数 ([Formula: see text]) 悬停飞行。然后,将该框架应用于比较具有不同 [Formula: see text] 和罗斯比数 ([Formula: see text],或纵横比) 的矩形刚性旋转和扑翼的效率。所提出的框架能够在无量纲空间中生成最大化升力系数和最小化功率系数的最优解和帕累托前沿的集合,明确揭示了升力产生和功率消耗之间的权衡。结果表明,当所需的平均升力系数 [Formula: see text] 较低(对于 [Formula: see text] 为 <1,对于 [Formula: see text] 为 <1.6)时,旋转翼更有效,而扑翼在实现更高的 [Formula: see text] 时更有效。以无量纲功率负载作为要最大化的单一目标性能度量,旋转飞行比扑翼飞行在 [Formula: see text] 时更有效,无论在扑翼致动机构中假设多少能量存储,而扑翼飞行在 [Formula: see text] 时更有效。观察到当需要更高的 [Formula: see text] 时,[Formula: see text] 较低的机翼表现更好,而在 [Formula: see text] 区域,[Formula: see text] 较高的情况效率更高。然而,对于所选的几何形状和 [Formula: see text],当最大化无量纲功率负载时,效率对 [Formula: see text] 的依赖性较弱。