Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26508, USA.
Faculty of Software, Fujian Normal University, Fuzhou 350108, China.
Molecules. 2018 Mar 19;23(3):697. doi: 10.3390/molecules23030697.
In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI). In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included much more available information about the RNA-protein pairs. In the second approach, we apply search algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences), and structure information (protein and RNA secondary structures). This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed approaches, including comparative results against leading state-of-the-art methods.
在这项工作中,我们研究了两种 RNA-Protein 相互作用 (RPI) 问题的方法。在第一种方法中,我们使用了一种基于特征的技术,结合了从序列和二级结构中提取的特征。基于特征的方法提高了预测精度,因为它包含了更多关于 RNA-蛋白质对的可用信息。在第二种方法中,我们应用搜索算法和数据结构来提取有效的字符串模式,用于预测 RPI,使用序列信息(蛋白质和 RNA 序列)和结构信息(蛋白质和 RNA 二级结构)。这导致了用于预测相互作用的 RNA-蛋白质对的不同基于字符串的模型。我们展示了结果,证明了所提出方法的有效性,包括与领先的最先进方法的比较结果。