Paris Alan, Vosoughi Azadeh, Berman Stephen A, Atia George
NeuroLogic Laboratory, Institute for Simulation and Training, University of Central Florida, Orlando, FL 32826, U.S.A.
Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32826, U.S.A.
Neural Comput. 2018 Jul;30(7):1830-1929. doi: 10.1162/NECO_a_01067. Epub 2018 Mar 22.
In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, called hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral exponents. We also discuss applications of quantum membranes beyond [Formula: see text]-type -noise, including applications to animal models and possible impact on quantum foundations.
在这封信中,我们对洛伦兹噪声进行了全面而深入的分析,例如由[公式:见正文]和[公式:见正文]通道动力学产生的噪声,以便确定神经膜中[公式:见正文]型噪声的来源。我们证明,洛伦兹噪声的自协方差仅取决于动力学矩阵的特征值(时间常数),但洛伦兹加权系数完全取决于该矩阵的特征向量。然后我们表明,存在动力学特征向量的旋转,可将任何初始权重发送到任何目标权重,而不改变时间常数。特别是,我们表明存在目标权重,对于这些权重,所得的洛伦兹噪声具有近似[公式:见正文]型频谱。我们通过引入一种称为隐藏量子激活测量模型的膜随机过程的量子力学公式来证明这些动力学旋转的合理性,并证明这些量子模型在概率上与通常用于离子通道随机过程的经典隐藏马尔可夫模型无法区分。用量子膜代替经典膜所获得的量子红利在于,洛伦兹权重的旋转变成了量子态的简单重新调整,而实验室确定的动力学和电导参数没有任何变化。此外,量子形式主义使我们能够对膜的激活能进行建模,并且我们表明在受限激活能下最大化熵会产生先前的[公式:见正文]型洛伦兹权重,其中光谱指数[公式:见正文]是能量约束的拉格朗日乘数。因此,我们提供了一种合理的神经物理机制,通过该机制通道和膜动力学可以产生[公式:见正文]型噪声(这在文献中偶尔被否认),以及对光谱指数数值的现实且可实验检验的解释。我们还讨论了量子膜在[公式:见正文]型噪声之外的应用,包括在动物模型中的应用以及对量子基础可能产生的影响。