IEEE Trans Image Process. 2018 Jun;27(6):2883-2896. doi: 10.1109/TIP.2018.2810541.
Superpixel segmentation targets at grouping pixels in an image into atomic regions whose boundaries align well with the natural object boundaries. This paper first proposes a new feature representation for superpixel segmentation that holistically embraces color, contour, texture, and spatial features. Then, we introduce a clustering-based discriminability measure to iteratively evaluate the importance of different features. Integrating the feature representation and the discriminability measure, we propose a novel content-adaptive superpixel (CAS) segmentation algorithm. CAS is able to automatically and iteratively adjust the weights of different features to fit various properties of image instances. Experiments on several challenging datasets demonstrate that the proposed CAS outperforms the state-of-the-art methods and has a low computational cost.
超像素分割旨在将图像中的像素分组为原子区域,其边界与自然物体边界很好地对齐。本文首先提出了一种新的超像素分割特征表示方法,整体包含颜色、轮廓、纹理和空间特征。然后,我们引入了基于聚类的可区分性度量来迭代评估不同特征的重要性。结合特征表示和可区分性度量,我们提出了一种新的内容自适应超像素 (CAS) 分割算法。CAS 能够自动和迭代地调整不同特征的权重,以适应图像实例的各种特性。在几个具有挑战性的数据集上的实验表明,所提出的 CAS 优于最先进的方法,并且具有较低的计算成本。