Suppr超能文献

机器学习 RF 匀场:迭代投影岭回归预测。

Machine learning RF shimming: Prediction by iteratively projected ridge regression.

机构信息

Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.

出版信息

Magn Reson Med. 2018 Nov;80(5):1871-1881. doi: 10.1002/mrm.27192. Epub 2018 Mar 23.

Abstract

PURPOSE

To obviate online slice-by-slice RF shim optimization and reduce B1+ mapping requirements for patient-specific RF shimming in high-field magnetic resonance imaging.

THEORY AND METHODS

RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR) predicts patient-specific, SAR-efficient RF shims with a machine learning approach that merges learning with training shim design. To evaluate it, a set of B1+ maps was simulated for 100 human heads for a 24-element coil at 7T. Features were derived from tissue masks and the DC Fourier coefficients of the coils' B1+ maps in each slice, which were used for kernelized ridge regression prediction of SAR-efficient RF shim weights. Predicted shims were compared to directly designed shims, circularly polarized mode, and nearest-neighbor shims predicted using the same features.

RESULTS

PIPRR predictions had 87% and 13% lower B1+ coefficients of variation compared to circularly polarized mode and nearest-neighbor shims, respectively, and achieved homogeneity and SAR similar to that of directly designed shims. Predictions were calculated in 4.92 ms on average.

CONCLUSION

PIPRR predicted uniform, SAR-efficient RF shims, and could save a large amount of B1+ mapping and computation time in RF-shimmed ultra-high field magnetic resonance imaging.

摘要

目的

避免在线逐片射频匀场优化,并减少高场磁共振成像中患者特定射频匀场的 B1+ 映射要求。

理论和方法

通过迭代投影岭回归(PIPRR)的 RF 匀场预测,采用机器学习方法预测患者特异性、SAR 高效的 RF 匀场,该方法将学习与训练匀场设计相结合。为了评估该方法,针对 7T 下 24 个线圈的 100 个人头模拟了一组 B1+ 图谱。特征来自组织掩模和线圈 B1+图谱的 DC 傅里叶系数,这些特征用于对 SAR 高效 RF 匀场权重进行核岭回归预测。预测的匀场与直接设计的匀场、圆极化模式以及使用相同特征预测的最近邻匀场进行了比较。

结果

PIPRR 预测的 B1+ 系数变化率分别比圆极化模式和最近邻匀场低 87%和 13%,并且实现了与直接设计匀场相似的均匀性和 SAR。预测的计算平均用时为 4.92ms。

结论

PIPRR 预测了均匀、SAR 高效的 RF 匀场,可节省射频匀场超高场磁共振成像中大量的 B1+ 映射和计算时间。

相似文献

1
Machine learning RF shimming: Prediction by iteratively projected ridge regression.
Magn Reson Med. 2018 Nov;80(5):1871-1881. doi: 10.1002/mrm.27192. Epub 2018 Mar 23.
2
Head-and-neck multichannel B1 mapping and RF shimming of the carotid arteries using a 7T parallel-transmit head coil.
Magn Reson Med. 2024 Jan;91(1):190-204. doi: 10.1002/mrm.29845. Epub 2023 Oct 5.
3
Bench to bore ramifications of inter-subject head differences on RF shimming and specific absorption rates at 7T.
Magn Reson Imaging. 2022 Oct;92:187-196. doi: 10.1016/j.mri.2022.07.009. Epub 2022 Jul 13.
4
Dynamic B0 shimming at 7 T.
Magn Reson Imaging. 2011 May;29(4):483-96. doi: 10.1016/j.mri.2011.01.002. Epub 2011 Mar 12.
5
Dynamic B shimming for multiband imaging using high order spherical harmonic shims.
Magn Reson Med. 2021 Jan;85(1):531-543. doi: 10.1002/mrm.28438. Epub 2020 Aug 28.
6
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T.
Magn Reson Med. 2020 Feb;83(2):749-764. doi: 10.1002/mrm.27929. Epub 2019 Sep 4.
7
Template-based field map prediction for rapid whole brain B shimming.
Magn Reson Med. 2018 Jul;80(1):171-180. doi: 10.1002/mrm.27020. Epub 2017 Nov 28.
9
Ultrafast volumetric B1 (+) mapping for improved radiofrequency shimming in 3 tesla body MRI.
J Magn Reson Imaging. 2014 Oct;40(4):857-63. doi: 10.1002/jmri.24438. Epub 2013 Nov 4.
10
Simultaneous multislice imaging with slice-specific z-shim.
Magn Reson Med. 2023 Aug;90(2):633-642. doi: 10.1002/mrm.29673. Epub 2023 Apr 24.

引用本文的文献

1
Machine Learning Enabled Multidimensional Data Utilization Through Multi-Resonance Architecture: A Pathway to Enhanced Accuracy in Biosensing.
ACS Omega. 2025 May 15;10(20):20713-20722. doi: 10.1021/acsomega.5c01700. eCollection 2025 May 27.
2
TOWARDS FAST HARD-CONSTRAINED PARALLEL TRANSMIT DESIGN IN ULTRAHIGH FIELD MRI WITH PHYSICS-DRIVEN NEURAL NETWORKS.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635855. Epub 2024 Aug 22.
3
Deep learning-based whole-brain B -mapping at 7T.
Magn Reson Med. 2025 Apr;93(4):1700-1711. doi: 10.1002/mrm.30359. Epub 2024 Oct 27.
4
Physics-guided self-supervised learning: Demonstration for generalized RF pulse design.
Magn Reson Med. 2025 Feb;93(2):657-672. doi: 10.1002/mrm.30307. Epub 2024 Oct 9.
5
Artificial intelligence for neuro MRI acquisition: a review.
MAGMA. 2024 Jul;37(3):383-396. doi: 10.1007/s10334-024-01182-7. Epub 2024 Jun 26.
6
Unsupervised deep learning with convolutional neural networks for static parallel transmit design: A retrospective study.
Magn Reson Med. 2024 Jun;91(6):2498-2507. doi: 10.1002/mrm.30014. Epub 2024 Jan 21.
7
Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control.
Magn Reson Imaging. 2022 Nov;93:87-96. doi: 10.1016/j.mri.2022.08.006. Epub 2022 Aug 5.
9
[Not Available].
Z Med Phys. 2022 Aug;32(3):334-345. doi: 10.1016/j.zemedi.2021.12.003. Epub 2022 Feb 7.
10
Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI.
PLoS One. 2021 Aug 6;16(8):e0255341. doi: 10.1371/journal.pone.0255341. eCollection 2021.

本文引用的文献

2
Universal pulses: A new concept for calibration-free parallel transmission.
Magn Reson Med. 2017 Feb;77(2):635-643. doi: 10.1002/mrm.26148. Epub 2016 Feb 17.
3
A generalized slab-wise framework for parallel transmit multiband RF pulse design.
Magn Reson Med. 2016 Apr;75(4):1444-56. doi: 10.1002/mrm.25689. Epub 2015 May 20.
6
Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods.
Magn Reson Med. 2012 Nov;68(5):1553-62. doi: 10.1002/mrm.24165. Epub 2012 Mar 5.
7
DREAM--a novel approach for robust, ultrafast, multislice B₁ mapping.
Magn Reson Med. 2012 Nov;68(5):1517-26. doi: 10.1002/mrm.24158. Epub 2012 Jan 17.
8
Local specific absorption rate control for parallel transmission by virtual observation points.
Magn Reson Med. 2011 Nov;66(5):1468-76. doi: 10.1002/mrm.22927. Epub 2011 May 20.
9
kT -points: short three-dimensional tailored RF pulses for flip-angle homogenization over an extended volume.
Magn Reson Med. 2012 Jan;67(1):72-80. doi: 10.1002/mrm.22978. Epub 2011 May 16.
10
The Virtual Family--development of surface-based anatomical models of two adults and two children for dosimetric simulations.
Phys Med Biol. 2010 Jan 21;55(2):N23-38. doi: 10.1088/0031-9155/55/2/N01. Epub 2009 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验