Key Laboratory for Advanced Materials & School of, Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China.
Chemistry. 2018 Sep 6;24(50):13064-13071. doi: 10.1002/chem.201800669. Epub 2018 Jun 29.
The nanopore can generate an electrochemical confinement for single-molecule sensing that help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this Concept article, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms.
纳米孔可以产生用于单分子传感的电化学限制,有助于在纳米尺度上理解基本的化学原理。通过观察产生的离子电流,可以以高时间和电流分辨率监测单个键形成和键断裂步骤、单个生物分子动态构象变化和发生在孔内的电子转移过程。这些在纳米孔限制中的单分子研究正在揭示关于基本化学和生物学过程的信息,这些信息无法从整体测量中提取。在这篇概念文章中,我们介绍和讨论了电化学限制对单分子共价反应、单个分子的构象动力学和蛋白质纳米孔中主客体相互作用的影响。然后,我们将纳米孔限制效应的概念扩展到用于开发新传感机制的固态纳米孔中的限制电化学氧化还原反应。