McQuade Sean T, Abrams Ruth E, Barrett Jeffrey S, Piccoli Benedetto, Azer Karim
Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA.
Translational Informatics Department, Sanofi US, Bridgewater, NJ, USA.
Gene Regul Syst Bio. 2017 Jul 26;11:1177625017711414. doi: 10.1177/1177625017711414. eCollection 2017.
Quantitative Systems Pharmacology (QSP) modeling is increasingly used as a quantitative tool for advancing mechanistic hypotheses on the mechanism of action of a drug, and its pharmacological effect in relevant disease phenotypes, to enable linking the right drug to the right patient. Application of QSP models relies on creation of virtual populations for simulating scenarios of interest. Creation of virtual populations requires 2 important steps, namely, identification of a subset of model parameters that can be associated with a phenotype of disease and development of a sampling strategy from identified distributions of these parameters. We improve on existing sampling methodologies by providing a means of representing the structural relationship across model parameters and describing propagation of variability in the model. This gives a robust, systematic method for creating a virtual population. We have developed the Linear-In-Flux-Expressions (LIFE) method to simulate variability in patient pharmacokinetics and pharmacodynamics using relationships between parameters at baseline to create a virtual population. We demonstrate the importance of this methodology on a model of cholesterol metabolism. The LIFE methodology brings us a step closer toward improved QSP simulators through enhanced capture of the observed variability in drug and disease clinical data.
定量系统药理学(QSP)建模越来越多地被用作一种定量工具,以推进关于药物作用机制及其在相关疾病表型中的药理作用的机制假设,从而实现将合适的药物与合适的患者相匹配。QSP模型的应用依赖于创建虚拟群体来模拟感兴趣的场景。创建虚拟群体需要两个重要步骤,即识别可与疾病表型相关联的模型参数子集,以及从这些参数的已识别分布中制定抽样策略。我们通过提供一种表示模型参数之间结构关系并描述模型中变异性传播的方法,对现有的抽样方法进行了改进。这给出了一种创建虚拟群体的稳健、系统的方法。我们开发了通量线性表达式(LIFE)方法,利用基线参数之间的关系来模拟患者药代动力学和药效学的变异性,从而创建虚拟群体。我们在胆固醇代谢模型上证明了该方法的重要性。LIFE方法通过增强对药物和疾病临床数据中观察到的变异性的捕捉,使我们在改进QSP模拟器方面又迈进了一步。