Elliott Kevin C, Cheruvelil Kendra S, Montgomery Georgina M, Soranno Patricia A
Kevin C. Elliott (
Bioscience. 2016 Oct 1;66(10):880-889. doi: 10.1093/biosci/biw115. Epub 2016 Oct 9.
Scientists have been debating for centuries the nature of proper scientific methods. Currently, criticisms being thrown at data-intensive science are reinvigorating these debates. However, many of these criticisms represent long-standing conflicts over the role of hypothesis testing in science and not just a dispute about the amount of data used. Here, we show that an iterative account of scientific methods developed by historians and philosophers of science can help make sense of data-intensive scientific practices and suggest more effective ways to evaluate this research. We use case studies of Darwin's research on evolution by natural selection and modern-day research on macrosystems ecology to illustrate this account of scientific methods and the innovative approaches to scientific evaluation that it encourages. We point out recent changes in the spheres of science funding, publishing, and education that reflect this richer account of scientific practice, and we propose additional reforms.
几个世纪以来,科学家们一直在争论恰当的科学方法的本质。目前,针对数据密集型科学的批评正在使这些争论重新活跃起来。然而,这些批评中的许多代表了关于假设检验在科学中的作用的长期冲突,而不仅仅是关于所使用数据量的争论。在这里,我们表明,科学史学家和科学哲学家所发展的一种关于科学方法的迭代观点,可以帮助理解数据密集型科学实践,并提出更有效的方法来评估这项研究。我们使用达尔文关于自然选择进化的研究以及宏观系统生态学的当代研究的案例,来说明这种科学方法观点以及它所鼓励的科学评估的创新方法。我们指出了科学资助、出版和教育领域最近的变化,这些变化反映了对科学实践更丰富的理解,并且我们提出了进一步的改革建议。