Suppr超能文献

评估软件平台对胶质母细胞瘤体积分割的影响。

Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma.

作者信息

Dunn William D, Aerts Hugo J W L, Cooper Lee A, Holder Chad A, Hwang Scott N, Jaffe Carle C, Brat Daniel J, Jain Rajan, Flanders Adam E, Zinn Pascal O, Colen Rivka R, Gutman David A

机构信息

Departments of Biomedical Informatics and Neurology, Emory University School of Medicine, Atlanta, GA, USA.

Departments of Radiation Oncology and Radiology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

J Neuroimaging Psychiatry Neurol. 2016;1(2):64-72. doi: 10.17756/jnpn.2016-008. Epub 2016 Jul 20.

Abstract

BACKGROUND

Radiological assessments of biologically relevant regions in glioblastoma have been associated with genotypic characteristics, implying a potential role in personalized medicine. Here, we assess the reproducibility and association with survival of two volumetric segmentation platforms and explore how methodology could impact subsequent interpretation and analysis.

METHODS

Post-contrast T1- and T2-weighted FLAIR MR images of 67 TCGA patients were segmented into five distinct compartments (necrosis, contrast-enhancement, FLAIR, post contrast abnormal, and total abnormal tumor volumes) by two quantitative image segmentation platforms - 3D Slicer and a method based on Velocity AI and FSL. We investigated the internal consistency of each platform by correlation statistics, association with survival, and concordance with consensus neuroradiologist ratings using ordinal logistic regression.

RESULTS

We found high correlations between the two platforms for FLAIR, post contrast abnormal, and total abnormal tumor volumes (spearman's r(67) = 0.952, 0.959, and 0.969 respectively). Only modest agreement was observed for necrosis and contrast-enhancement volumes (r(67) = 0.693 and 0.773 respectively), likely arising from differences in manual and automated segmentation methods of these regions by 3D Slicer and Velocity AI/FSL, respectively. Survival analysis based on AUC revealed significant predictive power of both platforms for the following volumes: contrast-enhancement, post contrast abnormal, and total abnormal tumor volumes. Finally, ordinal logistic regression demonstrated correspondence to manual ratings for several features.

CONCLUSION

Tumor volume measurements from both volumetric platforms produced highly concordant and reproducible estimates across platforms for general features. As automated or semi-automated volumetric measurements replace manual linear or area measurements, it will become increasingly important to keep in mind that measurement differences between segmentation platforms for more detailed features could influence downstream survival or radio genomic analyses.

摘要

背景

胶质母细胞瘤生物学相关区域的放射学评估已与基因型特征相关联,这意味着其在个性化医疗中可能发挥作用。在此,我们评估了两个体积分割平台的可重复性及其与生存的关联,并探讨方法学如何影响后续的解读和分析。

方法

通过两个定量图像分割平台——3D Slicer以及基于Velocity AI和FSL的方法,将67例TCGA患者的增强T1加权和T2加权液体衰减反转恢复(FLAIR)磁共振图像分割为五个不同的部分(坏死、强化、FLAIR、强化后异常以及总异常肿瘤体积)。我们通过相关统计、与生存的关联以及使用有序逻辑回归与神经放射科专家共识评级的一致性来研究每个平台的内部一致性。

结果

我们发现两个平台在FLAIR、强化后异常以及总异常肿瘤体积方面具有高度相关性(斯皮尔曼相关系数分别为r(67)=0.952、0.959和0.969)。对于坏死和强化体积,仅观察到中等程度的一致性(分别为r(67)=0.693和0.773),这可能分别源于3D Slicer和Velocity AI/FSL对这些区域的手动和自动分割方法的差异。基于曲线下面积(AUC)的生存分析显示,两个平台对于以下体积均具有显著的预测能力:强化、强化后异常以及总异常肿瘤体积。最后,有序逻辑回归表明几个特征与手动评级相对应。

结论

两个体积平台的肿瘤体积测量在一般特征方面在各平台间产生了高度一致且可重复的估计。随着自动或半自动体积测量取代手动线性或面积测量,牢记分割平台在更详细特征上的测量差异可能影响下游生存或放射基因组分析将变得越来越重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/444f/5870135/f0f20ce072dc/nihms815798f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验