Alonso-González Itziar, Sánchez-Rodríguez David, Ley-Bosch Carlos, Quintana-Suárez Miguel A
Institute for Technological Development and Innovation in Communications, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain.
Telematic Engineering Department, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain.
Sensors (Basel). 2018 Mar 30;18(4):1040. doi: 10.3390/s18041040.
Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates ( x , y , z ) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm.
由于对位置感知服务的兴趣日益浓厚,室内定位估计已成为一个有吸引力的研究课题。许多研究工作提出通过使用基于射频的无线通信系统来解决这个问题。然而,这些方法通常只能提供高达两米的精度,因为它们受到多径传播的阻碍。另一方面,在过去几年中,照明系统中发光二极管的使用日益增加,催生了可见光通信技术,其中数据通信是通过在电磁频谱的可见光波段进行传输来实现的。这为高精度室内定位带来了一种全新的方法,因为这种网络不受电磁干扰的影响,并且接收到的光功率比无线电信号更稳定。我们的研究重点是提出一种基于神经网络的指纹室内定位估计系统,以预测三维环境中设备的位置。神经网络是一种有效的分类和预测方法。该定位系统是使用来自不同点网格的接收信号强度数据集构建的。根据这些值,估计笛卡尔坐标(x,y,z)中的位置。这项工作提出使用三个神经网络,每个网络负责通过每个轴估计位置。实验结果表明,与广泛使用的传统指纹方法相比,所提出的系统在精度上有显著提高,准确率超过99%,平均误差距离为0.4毫米。