Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA.
Mol Genet Metab. 2018 May;124(1):71-81. doi: 10.1016/j.ymgme.2018.03.011. Epub 2018 Mar 27.
In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant.
在这项研究中,我们使用与符合母系遗传 Leigh 综合征(MILS)临床症状的先证者的成纤维细胞,报告了 m.8993T>G 变体的代谢后果的新观点。通过 Sanger 测序对 MT-ATP6 亚单位的致病性变体 m.8993T>G 进行线粒体 DNA 检测,证实了明确的诊断。长距离 PCR 后进行大规模平行测序方法检测到先证者成纤维细胞中 m.8993T>G 变体的近同质合子为 83%,而在母亲的成纤维细胞中为 0.4%。我们的结果与生殖系异质性极低或明显的新生突变相一致。我们的线粒体形态计量分析显示先证者成纤维细胞中线粒体嵴结构严重缺陷。我们的活细胞线粒体呼吸分析显示,先证者成纤维细胞的氧化磷酸化受损,对能量应激的备用呼吸能力降低。我们检测到糖酵解减少,糖酵解能力和储备减少,表明在 OXPHOS 活性完全抑制时,糖酵解向糖酵解的转变能力减弱。这种失调的能量重编程导致在能量危机期间 OXPHOS 和糖酵解之间的功能障碍相互作用。我们的研究揭示了携带 m.8993T>G 变体的 MILS 患者中慢性能量危机的潜在病理生理机制。