Suppr超能文献

SIFT 遇见 CNN:实例检索的十年调查。

SIFT Meets CNN: A Decade Survey of Instance Retrieval.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 May;40(5):1224-1244. doi: 10.1109/TPAMI.2017.2709749.

Abstract

In the early days, content-based image retrieval (CBIR) was studied with global features. Since 2003, image retrieval based on local descriptors (de facto SIFT) has been extensively studied for over a decade due to the advantage of SIFT in dealing with image transformations. Recently, image representations based on the convolutional neural network (CNN) have attracted increasing interest in the community and demonstrated impressive performance. Given this time of rapid evolution, this article provides a comprehensive survey of instance retrieval over the last decade. Two broad categories, SIFT-based and CNN-based methods, are presented. For the former, according to the codebook size, we organize the literature into using large/medium-sized/small codebooks. For the latter, we discuss three lines of methods, i.e., using pre-trained or fine-tuned CNN models, and hybrid methods. The first two perform a single-pass of an image to the network, while the last category employs a patch-based feature extraction scheme. This survey presents milestones in modern instance retrieval, reviews a broad selection of previous works in different categories, and provides insights on the connection between SIFT and CNN-based methods. After analyzing and comparing retrieval performance of different categories on several datasets, we discuss promising directions towards generic and specialized instance retrieval.

摘要

早期,基于内容的图像检索 (CBIR) 是使用全局特征进行研究的。自 2003 年以来,由于 SIFT 在处理图像变换方面的优势,基于局部描述符(实际上是 SIFT)的图像检索已被广泛研究了十多年。最近,基于卷积神经网络 (CNN) 的图像表示在社区中引起了越来越多的兴趣,并展示了令人印象深刻的性能。鉴于这种快速发展的时期,本文对过去十年中的实例检索进行了全面调查。提出了两种广泛的类别,基于 SIFT 的方法和基于 CNN 的方法。对于前者,根据码本大小,我们将文献组织为使用大/中/小码本。对于后者,我们讨论了三种方法,即使用预训练或微调的 CNN 模型,以及混合方法。前两种方法对图像进行单遍处理,而最后一种方法则采用基于补丁的特征提取方案。本调查介绍了现代实例检索的里程碑,回顾了不同类别中的广泛选择的先前工作,并提供了有关 SIFT 和基于 CNN 的方法之间的联系的见解。在分析和比较了不同类别在多个数据集上的检索性能之后,我们讨论了通用和专用实例检索的有前途的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验