Jeong Han-You, Nguyen Hoa-Hung, Bhawiyuga Adhitya
School of Electrical and Computer Engineering, Pusan National University, 46241 Busan, Korea.
Faculty of Computer Science, Brawijaya University, 65145 Malang, Indonesia.
Sensors (Basel). 2018 Apr 4;18(4):1092. doi: 10.3390/s18041092.
Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.
车辆定位在智能交通系统的协议、算法及应用设计中发挥着重要作用。在本文中,我们提出了一种新框架,该框架基于附近车辆的两种状态估计协同提高绝对车辆定位的精度:一种是由车载外感受传感器测量的局部传感估计,另一种是通过车与万物通信从相邻车辆接收的遥感估计。给定车辆状态的两种估计后,ST-LRSF方案识别附近的车辆集合,确定参考车辆状态,提出两个参考车辆状态之间的时空差异度量,并提出一种贪心算法来计算它们之间的最小加权匹配(MWM)。给定MWM的结果,所提出的改进算法的理论位置不确定性被证明与匹配大小的平方根成反比。为了进一步降低定位不确定性,我们还开发了一种扩展卡尔曼滤波器模型,将ST-LRSF的精化位置作为测量输入之一。数值结果表明,所提出的ST-LRSF框架在许多不同的协同车辆定位场景中都能实现较高的定位精度。