Suppr超能文献

肺腺癌预后的全面 CT 影像学组学分析。

Comprehensive Computed Tomography Radiomics Analysis of Lung Adenocarcinoma for Prognostication.

机构信息

Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.

出版信息

Oncologist. 2018 Jul;23(7):806-813. doi: 10.1634/theoncologist.2017-0538. Epub 2018 Apr 5.

Abstract

BACKGROUND

In this era of personalized medicine, there is an expanded demand for advanced imaging biomarkers that reflect the biology of the whole tumor. Therefore, we investigated a large number of computed tomography-derived radiomics features along with demographics and pathology-related variables in patients with lung adenocarcinoma, correlating them with overall survival.

MATERIALS AND METHODS

Three hundred thirty-nine patients who underwent operation for lung adenocarcinoma were included. Analysis was performed using 161 radiomics features, demographic, and pathologic variables and correlated each with patient survival. Prognostic performance for survival was compared among three models: (a) using only clinicopathological data; (b) using only selected radiomics features; and (c) using both clinicopathological data and selected radiomics features.

RESULTS

At multivariate analysis, age, pN, tumor size, type of operation, histologic grade, maximum value of the outer 1/3 of the tumor, and size zone variance were statistically significant variables. In particular, maximum value of outer 1/3 of the tumor reflected tumor microenvironment, and size zone variance represented intratumor heterogeneity. Integration of 31 selected radiomics features with clinicopathological variables led to better discrimination performance.

CONCLUSION

Radiomics approach in lung adenocarcinoma enables utilization of the full potential of medical imaging and has potential to improve prognosis assessment in clinical oncology.

IMPLICATIONS FOR PRACTICE

Two radiomics features were prognostic for lung cancer survival at multivariate analysis: (a) maximum value of the outer one third of the tumor reflects the tumor microenvironment and (b) size zone variance represents the intratumor heterogeneity. Therefore, a radiomics approach in lung adenocarcinoma enables utilization of the full potential of medical imaging and could play a larger role in clinical oncology.

摘要

背景

在个性化医学时代,人们对反映整个肿瘤生物学的高级成像生物标志物的需求不断增加。因此,我们研究了大量源自计算机断层扫描的放射组学特征,以及肺腺癌患者的人口统计学和病理学相关变量,并将其与总生存期相关联。

材料和方法

共纳入 339 例接受肺腺癌手术的患者。使用 161 个放射组学特征、人口统计学和病理学变量进行分析,并将每个变量与患者的生存情况相关联。使用三种模型比较生存预后的预测性能:(a)仅使用临床病理数据;(b)仅使用选定的放射组学特征;(c)同时使用临床病理数据和选定的放射组学特征。

结果

在多变量分析中,年龄、pN、肿瘤大小、手术类型、组织学分级、肿瘤外 1/3 的最大值和大小区方差是统计学显著的变量。特别是,肿瘤外 1/3 的最大值反映了肿瘤微环境,而大小区方差代表了肿瘤内异质性。将 31 个选定的放射组学特征与临床病理变量相结合,可以提高鉴别性能。

结论

肺腺癌的放射组学方法能够充分利用医学影像学的潜力,有可能改善临床肿瘤学的预后评估。

实践意义

在多变量分析中,有两个放射组学特征与肺癌的生存相关:(a)肿瘤外 1/3 的最大值反映了肿瘤微环境,(b)大小区方差代表了肿瘤内异质性。因此,肺腺癌的放射组学方法能够充分利用医学影像学的潜力,并在临床肿瘤学中发挥更大的作用。

相似文献

1
Comprehensive Computed Tomography Radiomics Analysis of Lung Adenocarcinoma for Prognostication.
Oncologist. 2018 Jul;23(7):806-813. doi: 10.1634/theoncologist.2017-0538. Epub 2018 Apr 5.
2
Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma.
Eur Radiol. 2020 May;30(5):2984-2994. doi: 10.1007/s00330-019-06581-2. Epub 2020 Jan 21.
3
Outcome prediction in resectable lung adenocarcinoma patients: value of CT radiomics.
Eur Radiol. 2020 Sep;30(9):4952-4963. doi: 10.1007/s00330-020-06872-z. Epub 2020 Apr 30.
6
Radiomics Approach to Prediction of Occult Mediastinal Lymph Node Metastasis of Lung Adenocarcinoma.
AJR Am J Roentgenol. 2018 Jul;211(1):109-113. doi: 10.2214/AJR.17.19074. Epub 2018 Apr 18.
7
Imaging Phenotyping Using Radiomics to Predict Micropapillary Pattern within Lung Adenocarcinoma.
J Thorac Oncol. 2017 Apr;12(4):624-632. doi: 10.1016/j.jtho.2016.11.2230. Epub 2016 Dec 5.
8
An individualised radiomics composite model predicting prognosis of stage 1 solid lung adenocarcinoma.
Clin Radiol. 2020 Jul;75(7):562.e11-562.e19. doi: 10.1016/j.crad.2020.03.019. Epub 2020 Apr 16.
10
Predicting malignant potential of subsolid nodules: can radiomics preempt longitudinal follow up CT?
Cancer Imaging. 2019 Jun 10;19(1):36. doi: 10.1186/s40644-019-0223-7.

引用本文的文献

2
Enhancing Identification of High-Risk cN0 Lung Adenocarcinoma Patients Using MRI-Based Radiomic Features.
Cancer Res Treat. 2025 Jan;57(1):57-69. doi: 10.4143/crt.2024.251. Epub 2024 Jun 26.
3
Histological Subtype Classification of Non-Small Cell Lung Cancer with Radiomics and 3D Convolutional Neural Networks.
J Imaging Inform Med. 2024 Dec;37(6):2895-2909. doi: 10.1007/s10278-024-01152-4. Epub 2024 Jun 11.
4
CT-based radiomic phenotypes of lung adenocarcinoma: a preliminary comparative analysis with targeted next-generation sequencing.
Front Med (Lausanne). 2023 Aug 17;10:1191019. doi: 10.3389/fmed.2023.1191019. eCollection 2023.
5
Value of radiomics in differentiating synchronous double primary lung adenocarcinomas from intrapulmonary metastasis.
J Thorac Dis. 2023 Jul 31;15(7):3685-3698. doi: 10.21037/jtd-23-133. Epub 2023 Jul 6.
6
Preoperative diagnosis of solitary pulmonary nodules with a novel hematological index model based on circulating tumor cells.
Front Oncol. 2023 May 3;13:1150539. doi: 10.3389/fonc.2023.1150539. eCollection 2023.
7
The Value of CT-Based Radiomics for Predicting Spread Through Air Spaces in Stage IA Lung Adenocarcinoma.
Front Oncol. 2022 Jul 8;12:757389. doi: 10.3389/fonc.2022.757389. eCollection 2022.
8
Multivariate Analysis on Development of Lung Adenocarcinoma Lesion from Solitary Pulmonary Nodule.
Contrast Media Mol Imaging. 2022 May 24;2022:8330111. doi: 10.1155/2022/8330111. eCollection 2022.
9
Reappraising the clinical usability of consolidation-to-tumor ratio on CT in clinical stage IA lung cancer.
Insights Imaging. 2022 Jun 17;13(1):103. doi: 10.1186/s13244-022-01235-2.

本文引用的文献

2
Data resources for the identification and interpretation of actionable mutations by clinicians.
Ann Oncol. 2017 May 1;28(5):946-957. doi: 10.1093/annonc/mdx023.
3
The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis.
Sci Transl Med. 2016 Feb 24;8(327):327ra26. doi: 10.1126/scitranslmed.aad6352.
4
Tumor microenvironment and therapeutic response.
Cancer Lett. 2017 Feb 28;387:61-68. doi: 10.1016/j.canlet.2016.01.043. Epub 2016 Feb 1.
5
NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.
Transl Oncol. 2014 Oct 24;7(5):556-69. doi: 10.1016/j.tranon.2014.07.007. eCollection 2014 Oct.
7
Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features.
Radiology. 2014 Oct;273(1):168-74. doi: 10.1148/radiol.14131731. Epub 2014 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验