Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom.
Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom.
J Biol Chem. 2018 May 25;293(21):8032-8047. doi: 10.1074/jbc.RA118.003200. Epub 2018 Apr 6.
Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. HO application promoted acinar cell apoptosis at low concentrations (1-10 μm), whereas higher levels (0.5-1 mm) elicited rapid necrosis. HO also decreased the mitochondrial NADH/FAD redox ratio and ΔΨ in a concentration-dependent manner (10 μm to 1 mm HO), with maximal effects at 500 μm HO HO decreased the basal O consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm HO However, higher HO levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of HO, which were inhibited by the antioxidant -acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨ, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation.
线粒体功能障碍是急性胰腺炎(AP)的核心。不同的 AP 刺激物诱导 Ca 依赖性的线粒体通透性转换孔(MPTP)形成,MPTP 是一种由亲环素 D(CypD)调节的溶质通道,其形成导致 ATP 耗竭和坏死。据报道,氧化应激触发 MPTP 的形成,并在临床 AP 中升高,但活性氧如何影响细胞死亡尚不清楚。在这里,我们评估了 MPTP 潜在参与氧化应激诱导的胰腺腺泡细胞生物能学和命运变化的可能性。低浓度(1-10μm)HO 处理促进了腺泡细胞凋亡,而较高浓度(0.5-1mm)则迅速引起坏死。HO 还以浓度依赖的方式降低了线粒体 NADH/FAD 氧化还原比和ΔΨ(10μm 至 1mm HO),在 500μm HO 时达到最大效应。HO 降低了腺泡细胞的基础 O 消耗率,在 <50μm HO 时对 ATP 周转没有改变。然而,较高的 HO 水平(≥50μm)降低了备用呼吸能力和 ATP 周转,随后发生生物能崩溃、ATP 耗竭和细胞死亡。Menadione 产生了类似于 HO 的有害生物能学效应,抗氧化剂乙酰半胱氨酸抑制了这种效应。氧化应激引起的生物能变化、ΔΨ丧失和细胞死亡,不能通过 CypD 基因缺失或环孢菌素 A 急性抑制来改善。这些结果表明,氧化应激改变了线粒体生物能学并改变了胰腺腺泡细胞的死亡。从凋亡到坏死的转变似乎与线粒体备用呼吸能力和 ATP 产生的降低有关,这些效应独立于 CypD 敏感的 MPTP 形成。