Suppr超能文献

定量脑电图分析在谵妄诊断中的性能和效用:一项大型回顾性病例对照研究的证实结果。

Diagnostic Performance and Utility of Quantitative EEG Analyses in Delirium: Confirmatory Results From a Large Retrospective Case-Control Study.

机构信息

Vision and Motor System Research Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Neurointensive Care Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Clin EEG Neurosci. 2019 Mar;50(2):111-120. doi: 10.1177/1550059418767584. Epub 2018 Apr 10.

Abstract

. The lack of objective disease markers is a major cause of misdiagnosis and nonstandardized approaches in delirium. Recent studies conducted in well-selected patients and confined study environments suggest that quantitative electroencephalography (qEEG) can provide such markers. We hypothesize that qEEG helps remedy diagnostic uncertainty not only in well-defined study cohorts but also in a heterogeneous hospital population. . In this retrospective case-control study, EEG power spectra of delirious patients and age-/gender-matched controls (n = 31 and n = 345, respectively) were fitted in a linear model to test their performance as binary classifiers. We subsequently evaluated the diagnostic performance of the best classifiers in control samples with normal EEGs (n = 534) and real-world samples including pathologic findings (n = 4294). Test reliability was estimated through split-half analyses. . We found that the combination of spectral power at F3-P4 at 2 Hz (area under the curve [AUC] = .994) and C3-O1 at 19 Hz (AUC = .993) provided a sensitivity of 100% and a specificity of 99% to identify delirious patients among normal controls. These classifiers also yielded a false positive rate as low as 5% and increased the pretest probability of being delirious by 57% in an unselected real-world sample. Split-half reliabilities were .98 and .99, respectively. . This retrospective study yielded preliminary evidence that qEEG provides excellent diagnostic performance to identify delirious patients even outside confined study environments. It furthermore revealed reduced beta power as a novel specific finding in delirium and that a normal EEG excludes delirium. Prospective studies including parameters of pretest probability and delirium severity are required to elaborate on these promising findings.

摘要

. 缺乏客观的疾病标志物是导致谵妄误诊和治疗方法不规范的主要原因。最近在精心挑选的患者和受限的研究环境中进行的研究表明,定量脑电图(qEEG)可以提供此类标志物。我们假设 qEEG 不仅可以帮助明确诊断,而且可以帮助改善定义不明确的研究队列和异质的医院人群的诊断不确定性。. 在这项回顾性病例对照研究中,将谵妄患者和年龄/性别匹配的对照组(分别为 n = 31 和 n = 345)的 EEG 功率谱拟合到线性模型中,以测试其作为二进制分类器的性能。随后,我们在具有正常 EEG 的对照组样本(n = 534)和包括病理发现的真实世界样本(n = 4294)中评估了最佳分类器的诊断性能。通过拆分一半分析来估计测试可靠性。. 我们发现,在 2 Hz 时 F3-P4 处的光谱功率(曲线下面积 [AUC] =.994)和 19 Hz 时 C3-O1 处的光谱功率(AUC =.993)的组合可提供 100%的敏感性和 99%的特异性,以将谵妄患者与正常对照组区分开来。这些分类器的假阳性率也低至 5%,并在未选择的真实世界样本中使谵妄的术前概率增加了 57%。拆分一半的可靠性分别为.98 和.99。. 这项回顾性研究初步证明,qEEG 提供了出色的诊断性能,可以识别出即使在受限的研究环境之外的谵妄患者。此外,它还揭示了减少的β功率是谵妄的一种新的特异性发现,并且正常的 EEG 可以排除谵妄。需要前瞻性研究包括术前概率和谵妄严重程度的参数,以进一步阐述这些有希望的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验