Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742.
Department of Biology, University of Maryland, College Park, MD 20742.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3869-E3878. doi: 10.1073/pnas.1718154115. Epub 2018 Apr 9.
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
基于局部观测来量化网络节点之间的功能关系是研究复杂系统的一个关键挑战。为此,大多数现有的时间序列分析技术提供了网络属性的静态估计,适用于平稳高斯数据,或者没有考虑到基础功能网络中普遍存在的稀疏性。当将其应用于经历快速任务相关动力学的神经元集合的尖峰记录时,它们会阻碍对自适应行为背后的动态神经元功能网络进行精确的统计描述。我们通过整合自适应滤波、压缩感知、点过程理论和高维统计等技术,开发了一种用于提取格兰杰意义上的功能神经元网络动力学的动态估计和推断范例。我们通过理论分析、算法开发以及对合成和真实数据的应用来证明我们提出的范例的实用性。我们的技术在对来自小鼠听觉皮层的双光子 Ca 成像实验的应用揭示了在前所未有的时空分辨率下,自发活动下功能神经元网络结构的独特特征。我们对来自雪貂听觉和前额叶皮层区域的同时记录的分析表明,快速的自上而下和自下而上的功能动力学在这些区域中发挥作用,这与稳健的注意力行为有关。