Suppr超能文献

利用相邻细胞幅度信息的δ广义标记多伯努利滤波器

δ-Generalized Labeled Multi-Bernoulli Filter Using Amplitude Information of Neighboring Cells.

作者信息

Liu Chao, Sun Jinping, Lei Peng, Qi Yaolong

机构信息

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.

出版信息

Sensors (Basel). 2018 Apr 10;18(4):1153. doi: 10.3390/s18041153.

Abstract

The amplitude information (AI) of echoed signals plays an important role in radar target detection and tracking. A lot of research shows that the introduction of AI enables the tracking algorithm to distinguish targets from clutter better and then improves the performance of data association. The current AI-aided tracking algorithms only consider the signal amplitude in the range-azimuth cell where measurement exists. However, since radar echoes always contain backscattered signals from multiple cells, the useful information of neighboring cells would be lost if directly applying those existing methods. In order to solve this issue, a new δ-generalized labeled multi-Bernoulli (δ-GLMB) filter is proposed. It exploits the AI of radar echoes from neighboring cells to construct a united amplitude likelihood ratio, and then plugs it into the update process and the measurement-track assignment cost matrix of the δ-GLMB filter. Simulation results show that the proposed approach has better performance in target's state and number estimation than that of the δ-GLMB only using single-cell AI in low signal-to-clutter-ratio (SCR) environment.

摘要

回波信号的幅度信息(AI)在雷达目标检测与跟踪中起着重要作用。大量研究表明,引入AI能使跟踪算法更好地将目标与杂波区分开来,进而提高数据关联性能。当前的AI辅助跟踪算法仅考虑存在测量值的距离-方位单元中的信号幅度。然而,由于雷达回波总是包含来自多个单元的后向散射信号,直接应用现有方法会丢失相邻单元的有用信息。为解决此问题,提出了一种新的δ-广义标记多伯努利(δ-GLMB)滤波器。它利用相邻单元雷达回波的AI构建联合幅度似然比,然后将其代入δ-GLMB滤波器的更新过程和测量-跟踪分配代价矩阵中。仿真结果表明,在低信杂比(SCR)环境下,与仅使用单单元AI的δ-GLMB相比,该方法在目标状态和数量估计方面具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c6f/5948928/a8dadd863165/sensors-18-01153-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验