Suppr超能文献

传统及现代方法修复重金属污染土壤的最新进展

Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

作者信息

Sharma Swati, Tiwari Sakshi, Hasan Abshar, Saxena Varun, Pandey Lalit M

机构信息

Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039 India.

出版信息

3 Biotech. 2018 Apr;8(4):216. doi: 10.1007/s13205-018-1237-8. Epub 2018 Apr 9.

Abstract

Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

摘要

一段时间以来,重金属污染土壤的修复一直备受关注,当下迫切需要开发新的修复方法。传统的重金属污染土壤修复方法已经使用了几十年,取得了显著成效,但也存在自身的不足。化学和物理技术单独使用时通常会产生副产品(有毒污泥或污染物),且成本效益不高,而生物过程则非常缓慢且耗时。因此,为了克服这些问题,人们开始采用两种或多种技术的结合。鉴于这些事实,已经开发了生物吸附、纳米修复以及微生物燃料电池技术等新方法,这些方法利用微生物的代谢活动进行生物修复。它们是具有成本效益和高效的修复方法,现在正成为所有环境和生物资源技术不可或缺的一部分。在本论文中,我们重点介绍了物理、化学和生物方法在重金属污染土壤修复方面的各种改进,并权衡了它们的优缺点。此外,我们还结合近期文献讨论了上述技术的结合,如物理化学和物理生物学方法在从污染土壤中去除重金属方面的应用。这些组合显示出协同效应,重金属去除效率提高了许多倍,同时具有经济可行性。

相似文献

1
Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.
3 Biotech. 2018 Apr;8(4):216. doi: 10.1007/s13205-018-1237-8. Epub 2018 Apr 9.
3
Evaluation of phytoremediation capability of French marigold () and African marigold () under heavy metals contaminated soils.
Int J Phytoremediation. 2022;24(9):945-954. doi: 10.1080/15226514.2021.1985960. Epub 2021 Oct 11.
5
Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review.
J Toxicol. 2018 Sep 27;2018:2568038. doi: 10.1155/2018/2568038. eCollection 2018.
6
Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review.
Chemosphere. 2023 Aug;332:138861. doi: 10.1016/j.chemosphere.2023.138861. Epub 2023 May 5.
7
A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.
Int J Environ Res Public Health. 2017 Jan 19;14(1):94. doi: 10.3390/ijerph14010094.
8
Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
Ecotoxicol Environ Saf. 2019 Jun 15;174:714-727. doi: 10.1016/j.ecoenv.2019.02.068. Epub 2019 Mar 14.
9
Bioelectrochemical remediation of Cr(VI)/Cd(II)-contaminated soil in bipolar membrane microbial fuel cells.
Environ Res. 2020 Jul;186:109582. doi: 10.1016/j.envres.2020.109582. Epub 2020 Apr 24.
10
A bibliometric analysis and assessment of priorities for heavy metal bioavailability research and risk management in contaminated land.
Environ Geochem Health. 2023 Jun;45(6):2691-2704. doi: 10.1007/s10653-022-01387-6. Epub 2022 Sep 21.

引用本文的文献

1
Hexavalent chromium at the crossroads of science, environment and public health.
RSC Adv. 2025 Jun 25;15(27):21439-21464. doi: 10.1039/d5ra03104d. eCollection 2025 Jun 23.
4
A phytoremediation approach for the restoration of coal fly ash polluted sites: A review.
Heliyon. 2024 Nov 30;10(23):e40741. doi: 10.1016/j.heliyon.2024.e40741. eCollection 2024 Dec 15.
5
Microbes mediated alleviation of chromium (Cr VI) stress for improved phytoextraction in fodder maize ( L.) cultivar.
Heliyon. 2024 Nov 13;10(23):e40361. doi: 10.1016/j.heliyon.2024.e40361. eCollection 2024 Dec 15.
6
Uptake and Accumulation of Cobalt Is Mediated by OsNramp5 in Rice.
Plant Cell Environ. 2025 Jan;48(1):3-14. doi: 10.1111/pce.15130. Epub 2024 Sep 2.
9
Degradation of Triazole Fungicides by Plant Growth-Promoting Bacteria from Contaminated Agricultural Soil.
J Microbiol Biotechnol. 2024 Jan 28;34(1):56-64. doi: 10.4014/jmb.2308.08037. Epub 2023 Oct 26.
10
Endophytic fungus from Handroanthus impetiginosus immobilized on electrospun nanofibrous membrane for bioremoval of bisphenol A.
World J Microbiol Biotechnol. 2023 Jul 28;39(10):261. doi: 10.1007/s11274-023-03715-z.

本文引用的文献

2
The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation.
Folia Microbiol (Praha). 2018 Jul;63(4):507-510. doi: 10.1007/s12223-018-0583-6. Epub 2018 Jan 19.
3
Use of zeolite to neutralise nickel in a soil environment.
Environ Monit Assess. 2017 Dec 30;190(1):54. doi: 10.1007/s10661-017-6427-z.
5
Microalgal-biochar immobilized complex: A novel efficient biosorbent for cadmium removal from aqueous solution.
Bioresour Technol. 2017 Nov;244(Pt 1):1031-1038. doi: 10.1016/j.biortech.2017.08.085. Epub 2017 Aug 19.
6
Isolation, identification and characterization of arsenic transforming exogenous endophytic sp. RPT from roots of .
3 Biotech. 2017 Aug;7(4):264. doi: 10.1007/s13205-017-0901-8. Epub 2017 Jul 26.
7
Arctic and Subarctic Natural Soils Emit Chloroform and Brominated Analogues by Alkaline Hydrolysis of Trihaloacetyl Compounds.
Environ Sci Technol. 2017 Jun 6;51(11):6131-6138. doi: 10.1021/acs.est.7b00144. Epub 2017 May 17.
8
The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control.
Adv Appl Microbiol. 2017;99:103-137. doi: 10.1016/bs.aambs.2017.01.001. Epub 2017 Mar 6.
9
Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7.
Ecotoxicol Environ Saf. 2017 Aug;142:139-149. doi: 10.1016/j.ecoenv.2017.04.005. Epub 2017 Apr 11.
10
Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides.
Environ Sci Pollut Res Int. 2017 Apr;24(10):9681-9689. doi: 10.1007/s11356-017-8637-x. Epub 2017 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验