Zheng Suqing, Jiang Mengying, Zhao Chengwei, Zhu Rui, Hu Zhicheng, Xu Yong, Lin Fu
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China.
Front Chem. 2018 Mar 29;6:82. doi: 10.3389/fchem.2018.00082. eCollection 2018.
bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program "e-Bitter" is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.
由于苦味剂的实验筛选成本高昂且费力,苦味剂预测受到了广泛关注。在这项工作中,我们收集了一个完整的实验数据集,其中包含707种苦味剂和592种非苦味剂,这与之前工作中使用的完全或部分假设的非苦味剂数据集不同。基于这个实验数据集,我们利用多种机器学习方法(如深度学习等)结合分子指纹的共识投票,通过五折交叉验证构建苦味/非苦味分类模型,并通过Y随机化检验和适用域分析对其进行进一步检验。在我们的测试集上,最佳共识模型之一的准确率、精确率、特异性、灵敏度、F1分数和马修斯相关系数(MCC)分别为0.929、0.918、0.898、0.954、0.936和0.856。为了方便用户通过简单的鼠标点击自动预测苦味剂,我们开发了一个图形程序“e-Bitter”。据我们所知,这是首次采用共识模型进行苦味剂预测,并为食品实验科学家开发了第一个独立的免费软件。