Suppr超能文献

用于机器人操纵器控制的强化学习神经网络

A Reinforcement Learning Neural Network for Robotic Manipulator Control.

作者信息

Hu Yazhou, Si Bailu

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P.R.C., and University of Chinese Academy of Sciences, Beijing 100049, P.R.C.

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Shenyang, P.R.C.

出版信息

Neural Comput. 2018 Jul;30(7):1983-2004. doi: 10.1162/neco_a_01079. Epub 2018 Apr 13.

Abstract

We propose a neural network model for reinforcement learning to control a robotic manipulator with unknown parameters and dead zones. The model is composed of three networks. The state of the robotic manipulator is predicted by the state network of the model, the action policy is learned by the action network, and the performance index of the action policy is estimated by a critic network. The three networks work together to optimize the performance index based on the reinforcement learning control scheme. The convergence of the learning methods is analyzed. Application of the proposed model on a simulated two-link robotic manipulator demonstrates the effectiveness and the stability of the model.

摘要

我们提出了一种用于强化学习的神经网络模型,以控制具有未知参数和死区的机器人操纵器。该模型由三个网络组成。机器人操纵器的状态由模型的状态网络预测,动作策略由动作网络学习,动作策略的性能指标由一个评判网络估计。这三个网络协同工作,基于强化学习控制方案优化性能指标。分析了学习方法的收敛性。将所提出的模型应用于模拟的双连杆机器人操纵器,证明了该模型的有效性和稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验