Department of Biochemistry, McGill University, Montreal, Canada.
Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Canada.
Antimicrob Agents Chemother. 2018 Jun 26;62(7). doi: 10.1128/AAC.00202-18. Print 2018 Jul.
The APH(2″)-Ia aminoglycoside resistance enzyme forms the C-terminal domain of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme and confers high-level resistance to natural 4,6-disubstituted aminoglycosides. In addition, reports have suggested that the enzyme can phosphorylate 4,5-disubstituted compounds and aminoglycosides with substitutions at the N1 position. Previously determined structures of the enzyme with bound aminoglycosides have not indicated how these noncanonical substrates may bind and be modified by the enzyme. We carried out crystallographic studies to directly observe the interactions of these compounds with the aminoglycoside binding site and to probe the means by which these noncanonical substrates interact with the enzyme. We find that APH(2″)-Ia maintains a preferred mode of binding aminoglycosides by using the conserved neamine rings when possible, with flexibility that allows it to accommodate additional rings. However, if this binding mode is made impossible because of additional substitutions to the standard 4,5- or 4,6-disubstituted aminoglycoside architecture, as in lividomycin A or the N1-substituted aminoglycosides, it is still possible for these aminoglycosides to bind to the antibiotic binding site by using alternate binding modes, which explains the low rates of noncanonical phosphorylation activities seen in enzyme assays. Furthermore, structural studies of a clinically observed arbekacin-resistant mutant of APH(2″)-Ia revealed an altered aminoglycoside binding site that can stabilize an alternative binding mode for N1-substituted aminoglycosides. This mutation may alter and expand the aminoglycoside resistance spectrum of the wild-type enzyme in response to newly developed aminoglycosides.
APH(2″)-Ia 氨基糖苷类耐药酶形成了双功能 AAC(6')-Ie/APH(2″)-Ia 酶的 C 末端结构域,并赋予其对天然 4,6-二取代氨基糖苷类的高水平耐药性。此外,有报道表明,该酶可以磷酸化 4,5-二取代化合物和 N1 位置取代的氨基糖苷类化合物。先前已确定的与结合氨基糖苷类化合物的酶结构并未表明这些非典型底物如何结合并被酶修饰。我们进行了晶体学研究,以直接观察这些化合物与氨基糖苷类结合位点的相互作用,并探究这些非典型底物与酶相互作用的方式。我们发现 APH(2″)-Ia 保持了对氨基糖苷类化合物的优先结合模式,尽可能使用保守的新霉胺环,同时具有一定的灵活性,可以容纳额外的环。然而,如果由于标准 4,5-或 4,6-二取代氨基糖苷类结构的额外取代而使这种结合模式变得不可能,如在利福霉素 A 或 N1-取代的氨基糖苷类化合物中,这些氨基糖苷类化合物仍有可能通过替代结合模式结合到抗生素结合位点,这解释了在酶测定中观察到的低非典型磷酸化活性率。此外,对临床观察到的 APH(2″)-Ia 阿贝卡星耐药突变体的结构研究揭示了一个改变的氨基糖苷类结合位点,可以稳定 N1-取代的氨基糖苷类化合物的替代结合模式。这种突变可能会改变和扩大野生型酶的氨基糖苷类耐药谱,以应对新开发的氨基糖苷类药物。