Suppr超能文献

氨基糖苷类抗生素与抗生素激酶 APH(2″)-Ia 结合的可塑性。

Plasticity of Aminoglycoside Binding to Antibiotic Kinase APH(2″)-Ia.

机构信息

Department of Biochemistry, McGill University, Montreal, Canada.

Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Canada.

出版信息

Antimicrob Agents Chemother. 2018 Jun 26;62(7). doi: 10.1128/AAC.00202-18. Print 2018 Jul.

Abstract

The APH(2″)-Ia aminoglycoside resistance enzyme forms the C-terminal domain of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme and confers high-level resistance to natural 4,6-disubstituted aminoglycosides. In addition, reports have suggested that the enzyme can phosphorylate 4,5-disubstituted compounds and aminoglycosides with substitutions at the N1 position. Previously determined structures of the enzyme with bound aminoglycosides have not indicated how these noncanonical substrates may bind and be modified by the enzyme. We carried out crystallographic studies to directly observe the interactions of these compounds with the aminoglycoside binding site and to probe the means by which these noncanonical substrates interact with the enzyme. We find that APH(2″)-Ia maintains a preferred mode of binding aminoglycosides by using the conserved neamine rings when possible, with flexibility that allows it to accommodate additional rings. However, if this binding mode is made impossible because of additional substitutions to the standard 4,5- or 4,6-disubstituted aminoglycoside architecture, as in lividomycin A or the N1-substituted aminoglycosides, it is still possible for these aminoglycosides to bind to the antibiotic binding site by using alternate binding modes, which explains the low rates of noncanonical phosphorylation activities seen in enzyme assays. Furthermore, structural studies of a clinically observed arbekacin-resistant mutant of APH(2″)-Ia revealed an altered aminoglycoside binding site that can stabilize an alternative binding mode for N1-substituted aminoglycosides. This mutation may alter and expand the aminoglycoside resistance spectrum of the wild-type enzyme in response to newly developed aminoglycosides.

摘要

APH(2″)-Ia 氨基糖苷类耐药酶形成了双功能 AAC(6')-Ie/APH(2″)-Ia 酶的 C 末端结构域,并赋予其对天然 4,6-二取代氨基糖苷类的高水平耐药性。此外,有报道表明,该酶可以磷酸化 4,5-二取代化合物和 N1 位置取代的氨基糖苷类化合物。先前已确定的与结合氨基糖苷类化合物的酶结构并未表明这些非典型底物如何结合并被酶修饰。我们进行了晶体学研究,以直接观察这些化合物与氨基糖苷类结合位点的相互作用,并探究这些非典型底物与酶相互作用的方式。我们发现 APH(2″)-Ia 保持了对氨基糖苷类化合物的优先结合模式,尽可能使用保守的新霉胺环,同时具有一定的灵活性,可以容纳额外的环。然而,如果由于标准 4,5-或 4,6-二取代氨基糖苷类结构的额外取代而使这种结合模式变得不可能,如在利福霉素 A 或 N1-取代的氨基糖苷类化合物中,这些氨基糖苷类化合物仍有可能通过替代结合模式结合到抗生素结合位点,这解释了在酶测定中观察到的低非典型磷酸化活性率。此外,对临床观察到的 APH(2″)-Ia 阿贝卡星耐药突变体的结构研究揭示了一个改变的氨基糖苷类结合位点,可以稳定 N1-取代的氨基糖苷类化合物的替代结合模式。这种突变可能会改变和扩大野生型酶的氨基糖苷类耐药谱,以应对新开发的氨基糖苷类药物。

相似文献

1
Plasticity of Aminoglycoside Binding to Antibiotic Kinase APH(2″)-Ia.
Antimicrob Agents Chemother. 2018 Jun 26;62(7). doi: 10.1128/AAC.00202-18. Print 2018 Jul.
3
Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.
Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.
4
Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.
Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2754-64. doi: 10.1107/S1399004714017635. Epub 2014 Sep 27.
6
Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.
Acta Crystallogr D Biol Crystallogr. 2014 Jun;70(Pt 6):1561-71. doi: 10.1107/S1399004714005331. Epub 2014 May 23.
7
Structural basis for the substrate recognition of aminoglycoside 7''-phosphotransferase-Ia from Streptomyces hygroscopicus.
Acta Crystallogr F Struct Biol Commun. 2019 Sep 1;75(Pt 9):599-607. doi: 10.1107/S2053230X19011105. Epub 2019 Aug 28.
9
Structural basis of APH(3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics.
Antimicrob Agents Chemother. 2009 Jul;53(7):3049-55. doi: 10.1128/AAC.00062-09. Epub 2009 May 11.
10
Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia.
Structure. 2016 Jun 7;24(6):935-45. doi: 10.1016/j.str.2016.04.002. Epub 2016 May 5.

引用本文的文献

1
Structural basis for plazomicin antibiotic action and resistance.
Commun Biol. 2021 Jun 11;4(1):729. doi: 10.1038/s42003-021-02261-4.
2
A kinase bioscavenger provides antibiotic resistance by extremely tight substrate binding.
Sci Adv. 2020 Jun 24;6(26):eaaz9861. doi: 10.1126/sciadv.aaz9861. eCollection 2020 Jun.

本文引用的文献

1
Kanamycin and its derivative, arbekacin: significance and impact.
J Antibiot (Tokyo). 2018 Mar;71(4):417-424. doi: 10.1038/s41429-017-0017-8. Epub 2018 Feb 5.
2
Amikacin: Uses, Resistance, and Prospects for Inhibition.
Molecules. 2017 Dec 19;22(12):2267. doi: 10.3390/molecules22122267.
3
Expanding Aminoglycoside Resistance Enzyme Regiospecificity by Mutation and Truncation.
Biochemistry. 2016 Oct 11;55(40):5726-5737. doi: 10.1021/acs.biochem.6b00770. Epub 2016 Sep 26.
4
Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia.
Structure. 2016 Jun 7;24(6):935-45. doi: 10.1016/j.str.2016.04.002. Epub 2016 May 5.
5
An evolutionary biochemist's perspective on promiscuity.
Trends Biochem Sci. 2015 Feb;40(2):72-8. doi: 10.1016/j.tibs.2014.12.004. Epub 2015 Jan 5.
6
Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.
Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2754-64. doi: 10.1107/S1399004714017635. Epub 2014 Sep 27.
7
Introduction to protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):2-20. doi: 10.1107/S2053230X13033141. Epub 2013 Dec 24.
8
Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase Eis.
Chembiochem. 2013 Nov 4;14(16):2127-35. doi: 10.1002/cbic.201300359. Epub 2013 Sep 17.
10
Multiple keys for a single lock: the unusual structural plasticity of the nucleotidyltransferase (4')/kanamycin complex.
Chemistry. 2012 Mar 5;18(10):2875-89. doi: 10.1002/chem.201101888. Epub 2012 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验