RTI International, Research Triangle Park, North Carolina, USA.
Syngenta Crop Protection, Greensboro, North Carolina, USA.
Environ Toxicol Chem. 2018 Jul;37(7):1864-1876. doi: 10.1002/etc.4154. Epub 2018 Jun 4.
Aquatic exposure assessments using surface water quality monitoring data are often challenged by missing extreme concentrations if sampling frequency is less than daily. A bias factor method has been previously proposed to address this concern for peak concentrations, where a bias factor is a multiplicative quantity to upwardly adjust estimates so that the true value is exceeded 95% of the time. In other words, bias factors are statistically protective adjustments. We evaluate this method using a research data set of 69 near-daily sampled site-years from the Atrazine Ecological Monitoring Program, dividing the data set into 23 reference and 46 validation site-years. Bias factors calculated from the reference data set are used to evaluate the method using the validation set for 1) point estimation, 2) interval estimation, and 3) decision-making. Sampling designs are every 7, 14, 28, and 90 d; and target quantities of assessment interest are the 90th and 95th percentiles and maximum m-day rolling averages (m = 1, 7, 21, 60, 90). We find that bias factors are poor point estimators in comparison with alternative methods. For interval estimation, average coverage is less than nominal, with coverage at individual site-years sometimes very low. Positive correlation of bias factors and target quantities, where present, adversely affects method performance. For decision rules or screening, the method typically shows very low false-negative rates but at the cost of extremely high false-positive rates. Environ Toxicol Chem 2018;37:1864-1876. © 2018 SETAC.
利用地表水质量监测数据进行水生暴露评估,如果采样频率低于每天一次,通常会因缺少极端浓度值而受到挑战。之前曾提出过一种偏差因子法来解决峰值浓度的问题,其中偏差因子是一个乘数量,用于向上调整估计值,以便真实值超过 95%的时间。换句话说,偏差因子是统计上的保护调整。我们使用来自莠去津生态监测计划的 69 个接近每日采样的站点年的研究数据集来评估这种方法,将数据集分为 23 个参考和 46 个验证站点年。从参考数据集计算出的偏差因子用于使用验证集评估 1)点估计、2)区间估计和 3)决策的方法。采样设计为每 7、14、28 和 90 d;评估感兴趣的目标数量为第 90 和第 95 百分位数和最大 m 天滚动平均值(m=1、7、21、60、90)。我们发现,与替代方法相比,偏差因子是较差的点估计器。对于区间估计,平均覆盖率低于名义值,个别站点年的覆盖率有时非常低。存在偏差因子和目标数量之间的正相关,会对方法性能产生不利影响。对于决策规则或筛选,该方法通常表现出极低的假阴性率,但代价是极高的假阳性率。环境毒理化学 2018;37:1864-1876。©2018 SETAC。