Suppr超能文献

利用水质监测数据评估偏倚因子的使用情况。

Evaluation of the use of bias factors with water monitoring data.

机构信息

RTI International, Research Triangle Park, North Carolina, USA.

Syngenta Crop Protection, Greensboro, North Carolina, USA.

出版信息

Environ Toxicol Chem. 2018 Jul;37(7):1864-1876. doi: 10.1002/etc.4154. Epub 2018 Jun 4.

Abstract

Aquatic exposure assessments using surface water quality monitoring data are often challenged by missing extreme concentrations if sampling frequency is less than daily. A bias factor method has been previously proposed to address this concern for peak concentrations, where a bias factor is a multiplicative quantity to upwardly adjust estimates so that the true value is exceeded 95% of the time. In other words, bias factors are statistically protective adjustments. We evaluate this method using a research data set of 69 near-daily sampled site-years from the Atrazine Ecological Monitoring Program, dividing the data set into 23 reference and 46 validation site-years. Bias factors calculated from the reference data set are used to evaluate the method using the validation set for 1) point estimation, 2) interval estimation, and 3) decision-making. Sampling designs are every 7, 14, 28, and 90 d; and target quantities of assessment interest are the 90th and 95th percentiles and maximum m-day rolling averages (m = 1, 7, 21, 60, 90). We find that bias factors are poor point estimators in comparison with alternative methods. For interval estimation, average coverage is less than nominal, with coverage at individual site-years sometimes very low. Positive correlation of bias factors and target quantities, where present, adversely affects method performance. For decision rules or screening, the method typically shows very low false-negative rates but at the cost of extremely high false-positive rates. Environ Toxicol Chem 2018;37:1864-1876. © 2018 SETAC.

摘要

利用地表水质量监测数据进行水生暴露评估,如果采样频率低于每天一次,通常会因缺少极端浓度值而受到挑战。之前曾提出过一种偏差因子法来解决峰值浓度的问题,其中偏差因子是一个乘数量,用于向上调整估计值,以便真实值超过 95%的时间。换句话说,偏差因子是统计上的保护调整。我们使用来自莠去津生态监测计划的 69 个接近每日采样的站点年的研究数据集来评估这种方法,将数据集分为 23 个参考和 46 个验证站点年。从参考数据集计算出的偏差因子用于使用验证集评估 1)点估计、2)区间估计和 3)决策的方法。采样设计为每 7、14、28 和 90 d;评估感兴趣的目标数量为第 90 和第 95 百分位数和最大 m 天滚动平均值(m=1、7、21、60、90)。我们发现,与替代方法相比,偏差因子是较差的点估计器。对于区间估计,平均覆盖率低于名义值,个别站点年的覆盖率有时非常低。存在偏差因子和目标数量之间的正相关,会对方法性能产生不利影响。对于决策规则或筛选,该方法通常表现出极低的假阴性率,但代价是极高的假阳性率。环境毒理化学 2018;37:1864-1876。©2018 SETAC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验