Suppr超能文献

一种用于治疗噪声性听力损失的新型纳米颗粒递药系统。

A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss.

机构信息

Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, BRB 1220, Philadelphia, PA 19104, USA.

Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, BRB 1220, Philadelphia, PA 19104, USA; Department of Pathology, UT Health Science Center, 6431 Fannin St., MSB 2.262, Houston, TX 77030, USA.

出版信息

J Control Release. 2018 Jun 10;279:243-250. doi: 10.1016/j.jconrel.2018.04.028. Epub 2018 Apr 16.

Abstract

Hearing loss is the most prevalent sensory disability worldwide and may be caused by age, drugs or exposure to excessive noise. We have previously developed a minimally-invasive nanohydrogel drug delivery system that successfully delivers nanoparticles into the inner ear. We have substantially extended this technique by functionalizing the nanoparticles and introducing a targeting peptide which recognizes prestin, a transmembrane electromotile protein uniquely expressed in outer hair cells (OHCs) of the inner ear. We demonstrate the successful delivery of molecules and plasmids specifically to OHCs. When compared to untargeted nanoparticles, the delivery of a c-Jun N-terminal kinase (JNK) inhibitor, D-JNKi-1, to OHCs by targeted nanoparticles improved protection from noise induced hearing loss (NIHL). This is the first demonstration of a protection from NIHL using a novel safe and controllable delivery system which is minimally-invasive to the inner ear and, as such, is an extremely appealing technique for use in many clinical applications.

摘要

听力损失是全球最普遍的感觉性残疾,可能由年龄、药物或暴露于过度噪音引起。我们之前开发了一种微创纳米水凝胶药物输送系统,该系统可成功将纳米颗粒递送至内耳。我们通过对纳米颗粒进行功能化并引入靶向肽来大大扩展了这项技术,该靶向肽可识别 prestin,一种在外毛细胞(OHC)中特异表达的跨膜电动蛋白。我们证明了分子和质粒可特异性递送至 OHC。与非靶向纳米颗粒相比,通过靶向纳米颗粒将 c-Jun N 末端激酶(JNK)抑制剂 D-JNKi-1 递送至 OHC 可改善对噪声诱导听力损失(NIHL)的保护。这是首次使用新型安全可控的递药系统来防止 NIHL 的证明,该系统对内耳的微创性,因此是一种极具吸引力的技术,可用于许多临床应用。

相似文献

1
A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss.
J Control Release. 2018 Jun 10;279:243-250. doi: 10.1016/j.jconrel.2018.04.028. Epub 2018 Apr 16.
2
A forskolin-loaded nanodelivery system prevents noise-induced hearing loss.
J Control Release. 2022 Aug;348:148-157. doi: 10.1016/j.jconrel.2022.05.052. Epub 2022 Jun 7.
5
Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKβ.
Cell Mol Life Sci. 2022 Apr 19;79(5):249. doi: 10.1007/s00018-022-04268-4.
6
Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK.
J Neurosci. 2016 Jul 13;36(28):7497-510. doi: 10.1523/JNEUROSCI.0782-16.2016.
7
ROS-Responsive Nanoparticle as a Berberine Carrier for OHC-Targeted Therapy of Noise-Induced Hearing Loss.
ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7102-7114. doi: 10.1021/acsami.0c21151. Epub 2021 Feb 2.
9
Activated protein C rescues the cochlea from noise-induced hearing loss.
Brain Res. 2014 Oct 2;1583:201-10. doi: 10.1016/j.brainres.2014.07.052. Epub 2014 Aug 7.
10
Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear.
Int J Pharm. 2012 Mar 15;424(1-2):121-7. doi: 10.1016/j.ijpharm.2011.12.042. Epub 2011 Dec 30.

引用本文的文献

2
Recent Advances in Functionalized Nanoparticles for Targeted and Controlled Inner Ear Therapy via Localized Cochlear Delivery.
J Audiol Otol. 2025 Jul;29(3):159-165. doi: 10.7874/jao.2025.00311. Epub 2025 Jul 18.
3
DLK/JNK3 Upregulation Aggravates Hair Cell Senescence in Mice Cochleae via Excessive Autophagy.
Aging Cell. 2025 Aug;24(8):e70099. doi: 10.1111/acel.70099. Epub 2025 May 12.
4
Rational Design of Inner Ear Drug Delivery Systems.
Adv Sci (Weinh). 2025 Aug;12(29):e2410568. doi: 10.1002/advs.202410568. Epub 2025 May 8.
7
Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear.
Ther Deliv. 2024;15(10):801-818. doi: 10.1080/20415990.2024.2389032. Epub 2024 Sep 26.
8
Rationally Designed Magnetic Nanoparticles for Cochlear Drug Delivery: Synthesis, Characterization, and In Vitro Biocompatibility in a Murine Model.
Otol Neurotol Open. 2022 Jul 20;2(3):e013. doi: 10.1097/ONO.0000000000000013. eCollection 2022 Sep.
10
Overcoming barriers: a review on innovations in drug delivery to the middle and inner ear.
Front Pharmacol. 2023 Oct 19;14:1207141. doi: 10.3389/fphar.2023.1207141. eCollection 2023.

本文引用的文献

1
Working with Auditory HEI-OC1 Cells.
J Vis Exp. 2016 Sep 3(115):54425. doi: 10.3791/54425.
2
c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea.
eNeuro. 2016 May 24;3(2). doi: 10.1523/ENEURO.0047-16.2016. eCollection 2016 Mar-Apr.
4
A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application.
Otol Neurotol. 2015 Feb;36(2):341-7. doi: 10.1097/MAO.0000000000000445.
5
Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.
Sci Transl Med. 2014 Apr 23;6(233):233ra54. doi: 10.1126/scitranslmed.3008177.
6
A regulated delivery system for inner ear drug application.
J Control Release. 2013 Mar 28;166(3):268-76. doi: 10.1016/j.jconrel.2012.12.031. Epub 2013 Jan 8.
7
Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery.
PLoS One. 2012;7(12):e52189. doi: 10.1371/journal.pone.0052189. Epub 2012 Dec 18.
8
Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear.
Int J Pharm. 2012 Mar 15;424(1-2):121-7. doi: 10.1016/j.ijpharm.2011.12.042. Epub 2011 Dec 30.
9
Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection.
Int J Otolaryngol. 2011;2011:937861. doi: 10.1155/2011/937861. Epub 2011 Oct 25.
10
A controlled and sustained local gentamicin delivery system for inner ear applications.
Otol Neurotol. 2010 Sep;31(7):1115-21. doi: 10.1097/MAO.0b013e3181eb32d1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验