Suppr超能文献

基于肾脏排泄的近红外二区荧光探针的分子癌症成像。

Molecular Cancer Imaging in the Second Near-Infrared Window Using a Renal-Excreted NIR-II Fluorophore-Peptide Probe.

机构信息

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.

Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.

出版信息

Adv Mater. 2018 May;30(22):e1800106. doi: 10.1002/adma.201800106. Epub 2018 Apr 23.

Abstract

In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody-modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) shows promise in reaching sub-centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR-II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide-dye (CP-IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor-to-normal tissue signal ratio (T/NT > 8). Importantly, the CP-IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody-dye probes. Further, with NIR-II emitting CP-IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR-II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.

摘要

针对特定癌细胞标志物的肿瘤体内分子成像,是癌症诊断和影像引导手术及治疗的一种很有前途的策略。虽然靶向成像通常依赖于抗体修饰的探针,但肽可以提供具有小尺寸、高穿透能力和快速排泄的靶向探针。最近,近红外二区(NIR-II,1000-1700nm)的体内荧光成像显示出在亚厘米深度实现微尺度分辨率的潜力。本文报道了一种新型肽(命名为 CP)偶联的 NIR-II 荧光探针,用于靶向肿瘤干细胞标志物 CD133 的分子肿瘤成像。通过点击化学衍生的肽-染料(CP-IRT 染料)探针,在小鼠体内实现了高效的肿瘤靶向,具有高肿瘤与正常组织信号比(T/NT>8)。重要的是,CP-IRT 探针可快速经肾脏排泄(6 小时内约 87%排泄),与典型抗体-染料探针在肝脏中的积累形成鲜明对比。此外,使用近红外二区发射的 CP-IRT 探针,首次可以无创地通过完整组织对小鼠的尿道进行荧光成像。这些具有 NIR-II 荧光、靶向 CD133 的成像探针,有望在临床上用于癌症的诊断和治疗。

相似文献

1
Molecular Cancer Imaging in the Second Near-Infrared Window Using a Renal-Excreted NIR-II Fluorophore-Peptide Probe.
Adv Mater. 2018 May;30(22):e1800106. doi: 10.1002/adma.201800106. Epub 2018 Apr 23.
2
NIR-II fluorescence-guided liver cancer surgery by a small molecular HDAC6 targeting probe.
EBioMedicine. 2023 Dec;98:104880. doi: 10.1016/j.ebiom.2023.104880. Epub 2023 Nov 29.
3
Deep learning for in vivo near-infrared imaging.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021446118.
4
Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):962-967. doi: 10.1073/pnas.1617990114. Epub 2017 Jan 17.
5
High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2123111119. doi: 10.1073/pnas.2123111119. Epub 2022 Apr 5.
7
A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice.
Amino Acids. 2012 Apr;42(4):1329-37. doi: 10.1007/s00726-010-0827-5. Epub 2011 Jan 7.
8
Molecular Targeted NIR-II Probe for Image-Guided Brain Tumor Surgery.
Bioconjug Chem. 2018 Nov 21;29(11):3833-3840. doi: 10.1021/acs.bioconjchem.8b00669. Epub 2018 Oct 23.
9
The multifaceted roles of peptides in "always-on" near-infrared fluorescent probes for tumor imaging.
Bioorg Chem. 2022 Dec;129:106182. doi: 10.1016/j.bioorg.2022.106182. Epub 2022 Oct 19.
10
An Asymmetric NIR-II Organic Fluorophore with an Ultra-Large Stokes Shift for Imaging-Guided and Targeted Phototherapy.
ACS Biomater Sci Eng. 2024 Jul 8;10(7):4541-4551. doi: 10.1021/acsbiomaterials.4c00496. Epub 2024 Jun 9.

引用本文的文献

1
Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application.
Precis Chem. 2023 Jun 4;1(8):468-479. doi: 10.1021/prechem.3c00036. eCollection 2023 Oct 23.
2
Tissue-seeking dyes for in vivo applications.
Smart Mol. 2024 Oct 24;2(4):e20240029. doi: 10.1002/smo.20240029. eCollection 2024 Dec.
3
Molecular Gold Nanoclusters for Advanced NIR-II Bioimaging and Therapy.
Chem Rev. 2025 Jun 11;125(11):5195-5227. doi: 10.1021/acs.chemrev.4c00835. Epub 2025 May 28.
4
NIR-II Fluorescent Protein Created by In Situ Albumin-Tagging for Sensitive and Specific Imaging of Blood-Brain Barrier Disruption.
Adv Sci (Weinh). 2025 Apr;12(16):e2500443. doi: 10.1002/advs.202500443. Epub 2025 Feb 25.
5
Dual Infrared 2-Photon Microscopy Achieves Minimal Background Deep Tissue Imaging in Brain and Plant Tissues.
Adv Funct Mater. 2024 Oct 29;34(44). doi: 10.1002/adfm.202404709. Epub 2024 May 27.
6
Construction of Targeting-Peptide-Based Imaging Reagents and Their Application in Bioimaging.
Chem Biomed Imaging. 2023 Dec 4;2(4):233-249. doi: 10.1021/cbmi.3c00104. eCollection 2024 Apr 22.
7
8
Charge barriers in the kidney elimination of engineered nanoparticles.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2403131121. doi: 10.1073/pnas.2403131121. Epub 2024 May 28.
10
Tracking tumor heterogeneity and progression with near-infrared II fluorophores.
Exploration (Beijing). 2023 Mar 16;3(2):20220011. doi: 10.1002/EXP.20220011. eCollection 2023 Apr.

本文引用的文献

2
Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10196-10201. doi: 10.1073/pnas.1711169114. Epub 2017 Sep 5.
3
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging.
Nat Commun. 2017 May 19;8:15269. doi: 10.1038/ncomms15269.
4
Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window.
Adv Mater. 2017 Mar;29(12). doi: 10.1002/adma.201605497. Epub 2017 Jan 24.
5
Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy.
J Am Chem Soc. 2017 Feb 8;139(5):1921-1927. doi: 10.1021/jacs.6b11382. Epub 2017 Jan 30.
6
Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):962-967. doi: 10.1073/pnas.1617990114. Epub 2017 Jan 17.
7
Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133.
Acta Biomater. 2017 Jan 1;47:182-192. doi: 10.1016/j.actbio.2016.10.009. Epub 2016 Oct 6.
8
Traumatic Brain Injury Imaging in the Second Near-Infrared Window with a Molecular Fluorophore.
Adv Mater. 2016 Aug;28(32):6872-9. doi: 10.1002/adma.201600706. Epub 2016 Jun 2.
9
NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors.
Nano Res. 2016 May;9(5):1393-1408. doi: 10.1007/s12274-016-1035-8. Epub 2016 Mar 4.
10
Counting on natural products for drug design.
Nat Chem. 2016 Jun;8(6):531-41. doi: 10.1038/nchem.2479. Epub 2016 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验