Wang Jia C, Bolger-Munro Madison, Gold Michael R
Department of Microbiology and Immunology, University of British Columbia.
Department of Microbiology and Immunology, University of British Columbia;
J Vis Exp. 2018 Apr 9(134):57028. doi: 10.3791/57028.
B cells that bind to membrane-bound antigens (e.g., on the surface of an antigen-presenting cell) form an immune synapse, a specialized cellular structure that optimizes B-cell receptor (BCR) signaling and BCR-mediated antigen acquisition. Both the remodeling of the actin cytoskeleton and the reorientation of the microtubule network towards the antigen contact site are essential for immune synapse formation. Remodeling of the actin cytoskeleton into a dense peripheral ring of F-actin is accompanied by polarization of the microtubule-organizing center towards the immune synapse. Microtubule plus-end binding proteins, as well as cortical plus-end capture proteins mediate physical interactions between the actin and microtubule cytoskeletons, which allow them to be reorganized in a coordinated manner. Elucidating the mechanisms that control this cytoskeletal reorganization, as well as understanding how these cytoskeletal structures shape immune synapse formation and BCR signaling, can provide new insights into B cell activation. This has been aided by the development of super-resolution microscopy approaches that reveal new details of cytoskeletal network organization. We describe here a method for using stimulated emission depletion (STED) microscopy to simultaneously image actin structures, microtubules, and transfected GFP-tagged microtubule plus-end binding proteins in B cells. To model the early events in immune synapse formation, we allow B cells to spread on coverslips coated with anti-immunoglobulin (anti-Ig) antibodies, which initiate BCR signaling and cytoskeleton remodeling. We provide step-by-step protocols for expressing GFP fusion proteins in A20 B-lymphoma cells, for anti-Ig-induced cell spreading, and for subsequent cell fixation, Immunostaining, image acquisition, and image deconvolution steps. The high-resolution images obtained using these procedures allow one to simultaneously visualize actin structures, microtubules, and the microtubule plus-end binding proteins that may link these two cytoskeletal networks.
与膜结合抗原(如抗原呈递细胞表面的抗原)结合的B细胞形成免疫突触,这是一种特殊的细胞结构,可优化B细胞受体(BCR)信号传导和BCR介导的抗原捕获。肌动蛋白细胞骨架的重塑以及微管网络向抗原接触位点的重新定向对于免疫突触的形成至关重要。肌动蛋白细胞骨架重塑为F-肌动蛋白密集的外周环伴随着微管组织中心向免疫突触的极化。微管正端结合蛋白以及皮质正端捕获蛋白介导肌动蛋白和微管细胞骨架之间的物理相互作用,使它们能够以协调的方式重组。阐明控制这种细胞骨架重组的机制,以及了解这些细胞骨架结构如何塑造免疫突触形成和BCR信号传导,可以为B细胞活化提供新的见解。超分辨率显微镜方法的发展有助于此,该方法揭示了细胞骨架网络组织的新细节。我们在此描述一种使用受激发射损耗(STED)显微镜同时成像B细胞中肌动蛋白结构、微管和转染的绿色荧光蛋白(GFP)标记的微管正端结合蛋白的方法。为了模拟免疫突触形成的早期事件,我们让B细胞在涂有抗免疫球蛋白(抗Ig)抗体的盖玻片上铺展,这些抗体会引发BCR信号传导和细胞骨架重塑。我们提供了在A20 B淋巴瘤细胞中表达GFP融合蛋白、抗Ig诱导的细胞铺展以及随后的细胞固定、免疫染色、图像采集和图像去卷积步骤的分步方案。使用这些程序获得的高分辨率图像使人们能够同时可视化肌动蛋白结构、微管以及可能连接这两个细胞骨架网络的微管正端结合蛋白。