Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.
Plant Cell Physiol. 2018 Aug 1;59(8):1630-1642. doi: 10.1093/pcp/pcy081.
Soil salinity significantly represses plant development and growth. Mechanisms involved sodium (Na+) extrusion and compartmentation, intracellular membrane trafficking as well as redox homeostasis regulation play important roles in plant salt tolerance. In this study, we report that Patellin1 (PATL1), a membrane trafficking-related protein, modulates salt tolerance in Arabidopsis. The T-DNA insertion mutant of PATL1 (patl1) with an elevated PATL1 transcription level displays a salt-sensitive phenotype. PATL1 partially associates with the plasma membrane (PM) and endosomal system, and might participate in regulating membrane trafficking. Interestingly, PATL1 interacts with SOS1, a PM Na+/H+ antiporter in the Salt-Overly-Sensitive (SOS) pathway, and the PM Na+/H+ antiport activity is lower in patl1 than in Col-0. Furthermore, the reactive oxygen species (ROS) content is higher in patl1 and the redox signaling of antioxidants is partially disrupted in patl1 under salt stress conditions. Artificial elimination of ROS could partially rescue the salt-sensitive phenotype of patl1. Taken together, our results indicate that PATL1 participates in plant salt tolerance by regulating Na+ transport at least in part via SOS1, and by modulating cellular redox homeostasis during salt stress.
土壤盐度显著抑制植物的发育和生长。涉及的机制包括钠(Na+)的外排和区隔化、细胞内膜运输以及氧化还原稳态调节,在植物的耐盐性中发挥重要作用。在这项研究中,我们报告了膜转运相关蛋白 Patellin1(PATL1)调节拟南芥耐盐性。PATL1 的 T-DNA 插入突变体(patl1)具有升高的 PATL1 转录水平,表现出盐敏感表型。PATL1 部分与质膜(PM)和内体系统相关联,可能参与调节膜运输。有趣的是,PATL1 与 SOS1 相互作用,SOS1 是盐过度敏感(SOS)途径中的 PM Na+/H+反向转运体,patl1 中的 PM Na+/H+反向转运活性低于 Col-0。此外,在盐胁迫条件下,patl1 中的活性氧(ROS)含量较高,抗氧化剂的氧化还原信号部分中断。人工消除 ROS 可以部分挽救 patl1 的盐敏感表型。总之,我们的结果表明,PATL1 通过调节 SOS1 中的 Na+转运至少部分参与植物的耐盐性,并通过调节盐胁迫过程中的细胞氧化还原稳态来调节细胞氧化还原稳态。