Suppr超能文献

重新利用的组氨酸氨基转移酶完成了一些甲烷菌素的生物合成。

Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins.

作者信息

Park Yun Ji, Kenney Grace E, Schachner Luis F, Kelleher Neil L, Rosenzweig Amy C

出版信息

Biochemistry. 2018 Jun 26;57(25):3515-3523. doi: 10.1021/acs.biochem.8b00296. Epub 2018 May 10.

Abstract

Methanobactins (Mbns) are ribosomally produced, post-translationally modified bacterial natural products with a high affinity for copper. MbnN, a pyridoxal 5'-phosphate-dependent aminotransferase, performs a transamination reaction that is the last step in the biosynthesis of Mbns produced by several Methylosinus species. Our bioinformatic analyses indicate that MbnNs likely derive from histidinol-phosphate aminotransferases (HisCs), which play a key role in histidine biosynthesis. A comparison of the HisC active site with the predicted MbnN structure suggests that MbnN's active site is altered to accommodate the larger and more hydrophobic substrates necessary for Mbn biosynthesis. Moreover, we have confirmed that MbnN is capable of catalyzing the final transamination step in Mbn biosynthesis in vitro and in vivo. We also demonstrate that without this final modification, Mbn exhibits significantly decreased stability under physiological conditions. An examination of other Mbns and Mbn operons suggests that N-terminal protection of this family of natural products is of critical importance and that several different means of N-terminal stabilization have evolved independently in Mbn subfamilies.

摘要

甲烷菌素(Mbns)是核糖体合成、翻译后修饰的细菌天然产物,对铜具有高亲和力。MbnN是一种依赖于磷酸吡哆醛的转氨酶,催化转氨反应,这是几种甲基弯曲菌属物种产生的Mbns生物合成的最后一步。我们的生物信息学分析表明,MbnN可能起源于磷酸组氨醇转氨酶(HisCs),其在组氨酸生物合成中起关键作用。将HisC活性位点与预测的MbnN结构进行比较表明,MbnN的活性位点发生了改变,以适应Mbn生物合成所需的更大且更疏水的底物。此外,我们已经证实MbnN能够在体外和体内催化Mbn生物合成中的最终转氨步骤。我们还证明,没有这种最终修饰,Mbn在生理条件下的稳定性会显著降低。对其他Mbns和Mbn操纵子的研究表明,该天然产物家族的N端保护至关重要,并且在Mbn亚家族中已经独立进化出几种不同的N端稳定化方式。

相似文献

1
Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins.
Biochemistry. 2018 Jun 26;57(25):3515-3523. doi: 10.1021/acs.biochem.8b00296. Epub 2018 May 10.
2
Characterization of Methanobactin from Methylosinus sp. LW4.
J Am Chem Soc. 2016 Sep 7;138(35):11124-7. doi: 10.1021/jacs.6b06821. Epub 2016 Aug 26.
3
Characterization of a Copper-Chelating Natural Product from the Methanotroph sp. LW3.
Biochemistry. 2021 Sep 28;60(38):2845-2850. doi: 10.1021/acs.biochem.1c00443. Epub 2021 Sep 12.
4
Purification and biochemical characterization of methanobactin biosynthetic enzymes.
Methods Enzymol. 2024;702:171-187. doi: 10.1016/bs.mie.2024.06.011. Epub 2024 Jul 14.
5
Methanobactins: from genome to function.
Metallomics. 2017 Jan 25;9(1):7-20. doi: 10.1039/c6mt00208k.
7
Genome mining for methanobactins.
BMC Biol. 2013 Feb 26;11:17. doi: 10.1186/1741-7007-11-17.
8
MbnH is a diheme MauG-like protein associated with microbial copper homeostasis.
J Biol Chem. 2019 Nov 1;294(44):16141-16151. doi: 10.1074/jbc.RA119.010202. Epub 2019 Sep 11.
10
Methanobactins: Maintaining copper homeostasis in methanotrophs and beyond.
J Biol Chem. 2018 Mar 30;293(13):4606-4615. doi: 10.1074/jbc.TM117.000185. Epub 2018 Jan 18.

引用本文的文献

1
Purification and biochemical characterization of methanobactin biosynthetic enzymes.
Methods Enzymol. 2024;702:171-187. doi: 10.1016/bs.mie.2024.06.011. Epub 2024 Jul 14.
2
Methanobactins: Structures, Biosynthesis, and Microbial Diversity.
Annu Rev Microbiol. 2024 Nov;78(1):383-401. doi: 10.1146/annurev-micro-041522-092911. Epub 2024 Nov 7.
3
Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases.
Chem Rev. 2024 Feb 14;124(3):1288-1320. doi: 10.1021/acs.chemrev.3c00727. Epub 2024 Feb 2.
5
Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via Hemi-Phosphorylation.
ACS Chem Biol. 2022 Oct 21;17(10):2769-2780. doi: 10.1021/acschembio.2c00324. Epub 2022 Aug 11.
6
Reassembling protein complexes after controlled disassembly by top-down mass spectrometry in native mode.
Int J Mass Spectrom. 2021 Jul;465. doi: 10.1016/j.ijms.2021.116591. Epub 2021 Mar 27.
7
Characterization of a Copper-Chelating Natural Product from the Methanotroph sp. LW3.
Biochemistry. 2021 Sep 28;60(38):2845-2850. doi: 10.1021/acs.biochem.1c00443. Epub 2021 Sep 12.
8
Copper binding by a unique family of metalloproteins is dependent on kynurenine formation.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2100680118.
9
Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa.
Electrophoresis. 2021 May;42(9-10):1050-1059. doi: 10.1002/elps.202000317. Epub 2021 Jan 27.
10
New developments in RiPP discovery, enzymology and engineering.
Nat Prod Rep. 2021 Jan 1;38(1):130-239. doi: 10.1039/d0np00027b. Epub 2020 Sep 16.

本文引用的文献

1
The biosynthesis of methanobactin.
Science. 2018 Mar 23;359(6382):1411-1416. doi: 10.1126/science.aap9437.
2
Methanobactins: from genome to function.
Metallomics. 2017 Jan 25;9(1):7-20. doi: 10.1039/c6mt00208k.
3
Methanobactin transport machinery.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13027-13032. doi: 10.1073/pnas.1603578113. Epub 2016 Nov 2.
5
Characterization of Methanobactin from Methylosinus sp. LW4.
J Am Chem Soc. 2016 Sep 7;138(35):11124-7. doi: 10.1021/jacs.6b06821. Epub 2016 Aug 26.
6
Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b.
Metallomics. 2016 Sep 1;8(9):931-40. doi: 10.1039/c5mt00289c. Epub 2016 Apr 18.
8
Enzymatic oxidation of methane.
Biochemistry. 2015 Apr 14;54(14):2283-94. doi: 10.1021/acs.biochem.5b00198. Epub 2015 Apr 1.
9
A subfamily of PLP-dependent enzymes specialized in handling terminal amines.
Biochim Biophys Acta. 2015 Sep;1854(9):1200-11. doi: 10.1016/j.bbapap.2015.02.023. Epub 2015 Mar 12.
10
Ornithine aminotransferase versus GABA aminotransferase: implications for the design of new anticancer drugs.
Med Res Rev. 2015 Mar;35(2):286-305. doi: 10.1002/med.21328. Epub 2014 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验