Suppr超能文献

SLAMM:使用多地图进行连续映射的视觉单目 SLAM。

SLAMM: Visual monocular SLAM with continuous mapping using multiple maps.

机构信息

Faculty of Computer Science and Information Technology, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia.

出版信息

PLoS One. 2018 Apr 27;13(4):e0195878. doi: 10.1371/journal.pone.0195878. eCollection 2018.

Abstract

This paper presents the concept of Simultaneous Localization and Multi-Mapping (SLAMM). It is a system that ensures continuous mapping and information preservation despite failures in tracking due to corrupted frames or sensor's malfunction; making it suitable for real-world applications. It works with single or multiple robots. In a single robot scenario the algorithm generates a new map at the time of tracking failure, and later it merges maps at the event of loop closure. Similarly, maps generated from multiple robots are merged without prior knowledge of their relative poses; which makes this algorithm flexible. The system works in real time at frame-rate speed. The proposed approach was tested on the KITTI and TUM RGB-D public datasets and it showed superior results compared to the state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and the retrieved map can reach up to 90 percent more in terms of information preservation depending on tracking loss and loop closure events. For the benefit of the community, the source code along with a framework to be run with Bebop drone are made available at https://github.com/hdaoud/ORBSLAMM.

摘要

本文提出了同时定位与多地图构建(SLAMM)的概念。该系统可确保在因跟踪失败而导致的帧损坏或传感器故障时,持续进行地图构建和信息保存,使其适用于实际应用。它可与单个或多个机器人配合使用。在单机器人场景中,算法在跟踪失败时生成新地图,随后在闭环事件中合并地图。同样,来自多个机器人的地图也可以在没有先验相对姿态知识的情况下进行合并,这使得该算法具有灵活性。系统可在帧率下实时工作。该方法在 KITTI 和 TUM RGB-D 公共数据集上进行了测试,与校准视觉单目关键帧 SLAM 的最新技术相比,其结果具有优越性。平均跟踪时间约为 22 毫秒。与 ORB-SLAM 相比,初始化速度快一倍,并且根据跟踪丢失和闭环事件,可保留多达 90%的信息。为了使社区受益,我们在 https://github.com/hdaoud/ORBSLAMM 上提供了源代码和与 Bebop 无人机一起运行的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377a/5922523/e4190a24e7b7/pone.0195878.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验