Padi Megha, Quackenbush John
1Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ USA.
2Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA.
NPJ Syst Biol Appl. 2018 Apr 19;4:16. doi: 10.1038/s41540-018-0052-5. eCollection 2018.
Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.
像人类身高或癌症这样的复杂性状和疾病通常不是由单个突变或基因变异引起的,而是源于潜在分子网络中的功能变化。已知生物网络具有高度模块化,并且包含执行细胞过程的密集基因“群落”,但这些结构在不同组织之间、发育过程中和疾病状态下会发生变化。虽然存在许多分别推断网络及其拓扑结构的方法,但缺乏用于量化网络结构差异的可靠方法。在这里,我们描述了ALPACA(跨群落结构的改变分区),这是一种用于比较从不同表型状态衍生的两个基因组规模网络以识别特定条件模块的方法。在模拟中,与目前可用的网络比较方法相比,ALPACA能带来更细致入微、更敏感且更可靠的模块发现。作为一个应用实例,我们使用ALPACA比较三种情况下的转录网络:卵巢癌的血管生成和非血管生成亚型、表达转化病毒癌基因的人类成纤维细胞以及人类乳腺组织中的性别二态性。在每种情况下,ALPACA都能识别出富含与表型相关过程的模块。例如,血管生成性卵巢肿瘤特有的模块富含与血管发育相关的基因,而在女性乳腺组织中发现的模块富含参与雌激素受体和ERK信号传导的基因。这些新模块的功能相关性表明,ALPACA不仅可以识别复杂网络中的结构变化,而且这些变化可能与表征生物学表型相关。