Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.
Department of Public Health, Hyogo College of Medicine, Mukogawa-cho 1-1, Nishinomiya, Hyogo 663-8501, Japan.
Sci Total Environ. 2018 Sep 1;634:1269-1277. doi: 10.1016/j.scitotenv.2018.03.324. Epub 2018 Apr 18.
Adequate spatial and temporal estimates of NO concentrations are essential for proper prenatal exposure assessment. Here, we develop a spatiotemporal land use random forest (LURF) model of the monthly mean NO over four years in a metropolitan area of Japan. The overall objective is to obtain accurate NO estimates for use in prenatal exposure assessments. We use random forests to convey the non-linear relationship between NO concentrations and predictor variables, and compare the prediction accuracy with that of a linear regression. In addition, we include the distance decay effect of emission sources on NO concentrations for more efficient model construction. The prediction accuracy of the LURF model is evaluated through a leave-one-monitor-out cross validation. We obtain a high R value of 0.79, which is better than that of the conventional land use regression model using linear regression (R of 0.73). We also evaluate the LURF model via a temporal and overall cross validation and obtain R values of 0.84 and 0.92, respectively. We successfully integrate temporal and spatial components into our model, which exhibits higher accuracy than spatial models constructed individually for each month. Our findings illustrate the advantage of using a LURF to model the spatiotemporal variability of NO concentrations.
准确估计 NO 浓度的时空分布对于进行适当的产前暴露评估至关重要。在这里,我们开发了一种时空土地利用随机森林 (LURF) 模型,用于估算日本大都市区四年内每月的平均 NO 浓度。总体目标是获得准确的 NO 浓度估计值,以用于产前暴露评估。我们使用随机森林来表达 NO 浓度与预测变量之间的非线性关系,并将预测精度与线性回归进行比较。此外,我们还考虑了排放源对 NO 浓度的距离衰减效应,以进行更有效的模型构建。通过留一监测器交叉验证来评估 LURF 模型的预测精度。我们得到了 0.79 的高 R 值,优于使用线性回归的传统土地利用回归模型 (R 值为 0.73)。我们还通过时间和整体交叉验证来评估 LURF 模型,分别得到 0.84 和 0.92 的 R 值。我们成功地将时间和空间成分整合到我们的模型中,该模型的精度高于为每个月单独构建的空间模型。我们的研究结果表明,使用 LURF 模型来模拟 NO 浓度的时空变化具有优势。