Theory of Condensed Matter Group, Cavendish Laboratory , University of Cambridge , 19 J J Thomson Avenue , Cambridge CB3 0HE , United Kingdom.
Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.
J Chem Theory Comput. 2018 Jun 12;14(6):3218-3227. doi: 10.1021/acs.jctc.8b00027. Epub 2018 May 8.
We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.
我们提出了一种称为原子级自由能微扰(AFEP)的通用方法,它将传统的分子动力学自由能微扰(FEP)模拟扩展到能够给出每个原子对自由能变化的贡献。AFEP 源自指数平均法中 Zwanzig 方程的扩展,通过定义系统总能量可以分解为每个原子的贡献来实现。假设并使用一种分区方法将扩展中的项分组以对应于单个原子。AFEP 应用于六个示例自由能变化以演示该方法。首先,甲烷、甲醇、甲胺、甲硫醇和咖啡因在水中的水合自由能。AFEP 突出了分子中与水相互作用有利或不利的原子。最后,AFEP 应用于人类免疫缺陷病毒 1 型蛋白酶与洛匹那韦的结合自由能,AFEP 揭示了每个原子对结合自由能的贡献,表明分子中可以改善以产生更强结合抑制剂的候选区域。FEP 为自由能变化提供了一个单一值,已经是一种非常有用的方法。AFEP 为模拟系统的每个“部分”提供自由能变化,其中部分可以是单个原子、化学基团、氨基酸或更大的分区,具体取决于用户要测量的内容。这种方法应该在物理、化学或生物化学现象的分子动力学研究中具有各种应用,特别是在计算药物发现领域。