Suppr超能文献

应用于多发性硬化症病变分割的联合强度融合图像合成

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.

作者信息

Fleishman Greg M, Valcarcel Alessandra, Pham Dzung L, Roy Snehashis, Calabresi Peter A, Yushkevich Paul, Shinohara Russell T, Oguz Ipek

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Brainlesion. 2018;10670:43-54. Epub 2018 Feb 17.

Abstract

We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by 0.0462 ± 0.0050 (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.

摘要

我们提出了一种利用合成图像进行多发性硬化症病变分割的新方法。考虑了一种新的图像合成方法:联合强度融合(JIF)。JIF从一组经过可变形配准和强度归一化的图谱库中合成图像。合成图像中的每个位置都是已配准图谱的加权平均值;图谱权重在空间上变化。权重使用联合标签融合(JLF)框架确定。主要的方法贡献是将JLF直接应用于MRI信号而非标签。然后,在使用OASIS分类器(一种基于多模态强度的逻辑回归模型)的病变分割任务中,将合成图像用作附加特征。在所有受试者和10个单独的训练/测试折上,在最佳阈值下,添加JIF合成图像相对于标准模型分割提高了病变分割的Dice-Sorensen系数(相对于手动绘制的金标准),提高了0.0462±0.0050(平均值±标准差)。

相似文献

2
Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion.
Patch Based Tech Med Imaging (2017). 2017 Sep;10530:138-145. doi: 10.1007/978-3-319-67434-6_16. Epub 2017 Aug 31.
3
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
4
Brain structure segmentation in the presence of multiple sclerosis lesions.
Neuroimage Clin. 2019;22:101709. doi: 10.1016/j.nicl.2019.101709. Epub 2019 Feb 14.
5
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI.
Neuroimage Clin. 2013 Mar 15;2:402-13. doi: 10.1016/j.nicl.2013.03.002. eCollection 2013.
6
A GENERATIVE MODEL FOR MULTI-ATLAS SEGMENTATION ACROSS MODALITIES.
Proc IEEE Int Symp Biomed Imaging. 2012:888-891. doi: 10.1109/ISBI.2012.6235691.
8
iSTAPLE: Improved Label Fusion for Segmentation by Combining STAPLE with Image Intensity.
Proc SPIE Int Soc Opt Eng. 2013 Feb;8669. doi: 10.1117/12.2006447. Epub 2013 Mar 13.
10
Automated segmentation of the thyroid gland on thoracic CT scans by multiatlas label fusion and random forest classification.
J Med Imaging (Bellingham). 2015 Oct;2(4):044006. doi: 10.1117/1.JMI.2.4.044006. Epub 2015 Dec 30.

引用本文的文献

1
Deep network and multi-atlas segmentation fusion for delineation of thigh muscle groups in three-dimensional water-fat separated MRI.
J Med Imaging (Bellingham). 2024 Sep;11(5):054003. doi: 10.1117/1.JMI.11.5.054003. Epub 2024 Sep 3.
2
Image harmonization improves consistency of intra-rater delineations of MS lesions in heterogeneous MRI.
Neuroimage Rep. 2024 Mar;4(1). doi: 10.1016/j.ynirp.2024.100195. Epub 2024 Feb 2.
3
LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel Segmentation.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12901:514-524. doi: 10.1007/978-3-030-87193-2_49. Epub 2021 Sep 21.
4
Self-fusion for OCT noise reduction.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11313. doi: 10.1117/12.2549472. Epub 2020 Mar 10.
5
Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis.
Sci Rep. 2020 May 19;10(1):8242. doi: 10.1038/s41598-020-64803-w.

本文引用的文献

1
Longitudinal multiple sclerosis lesion segmentation: Resource and challenge.
Neuroimage. 2017 Mar 1;148:77-102. doi: 10.1016/j.neuroimage.2016.12.064. Epub 2017 Jan 11.
2
Statistical estimation of white matter microstructure from conventional MRI.
Neuroimage Clin. 2016 Sep 14;12:615-623. doi: 10.1016/j.nicl.2016.09.010. eCollection 2016.
3
Statistical estimation of T1 relaxation times using conventional magnetic resonance imaging.
Neuroimage. 2016 Jun;133:176-188. doi: 10.1016/j.neuroimage.2015.12.037. Epub 2015 Dec 28.
4
Immunopathology of multiple sclerosis.
Nat Rev Immunol. 2015 Sep 15;15(9):545-58. doi: 10.1038/nri3871. Epub 2015 Aug 7.
6
Template-Based Multimodal Joint Generative Model of Brain Data.
Inf Process Med Imaging. 2015;24:17-29. doi: 10.1007/978-3-319-19992-4_2.
7
Multi-atlas segmentation of biomedical images: A survey.
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
8
Subject Specific Sparse Dictionary Learning for Atlas based Brain MRI Segmentation.
Mach Learn Med Imaging. 2014;8679:248-255. doi: 10.1007/978-3-319-10581-9_31.
9
MAGNETIC RESONANCE IMAGE SYNTHESIS THROUGH PATCH REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:350-353. doi: 10.1109/ISBI.2013.6556484.
10
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI.
Neuroimage Clin. 2013 Mar 15;2:402-13. doi: 10.1016/j.nicl.2013.03.002. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验