Fleishman Greg M, Valcarcel Alessandra, Pham Dzung L, Roy Snehashis, Calabresi Peter A, Yushkevich Paul, Shinohara Russell T, Oguz Ipek
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Brainlesion. 2018;10670:43-54. Epub 2018 Feb 17.
We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by 0.0462 ± 0.0050 (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.
我们提出了一种利用合成图像进行多发性硬化症病变分割的新方法。考虑了一种新的图像合成方法:联合强度融合(JIF)。JIF从一组经过可变形配准和强度归一化的图谱库中合成图像。合成图像中的每个位置都是已配准图谱的加权平均值;图谱权重在空间上变化。权重使用联合标签融合(JLF)框架确定。主要的方法贡献是将JLF直接应用于MRI信号而非标签。然后,在使用OASIS分类器(一种基于多模态强度的逻辑回归模型)的病变分割任务中,将合成图像用作附加特征。在所有受试者和10个单独的训练/测试折上,在最佳阈值下,添加JIF合成图像相对于标准模型分割提高了病变分割的Dice-Sorensen系数(相对于手动绘制的金标准),提高了0.0462±0.0050(平均值±标准差)。