Suppr超能文献

基于表面构建的互锁分子齿轮链。

Interlocking Molecular Gear Chains Built on Surfaces.

作者信息

Zhao Rundong, Qi Fei, Zhao Yan-Ling, Hermann Klaus E, Zhang Rui-Qin, Van Hove Michel A

机构信息

Institute of Computational and Theoretical Studies & Department of Physics , Hong Kong Baptist University , Hong Kong SAR , China.

Department of Physics , City University of Hong Kong , Hong Kong SAR , China.

出版信息

J Phys Chem Lett. 2018 May 17;9(10):2611-2619. doi: 10.1021/acs.jpclett.8b00676. Epub 2018 May 4.

Abstract

Periodic chains of molecular gears in which molecules couple with each other and rotate on surfaces have been previously explored by us theoretically using ab initio simulation tools. On the basis of the knowledge and experience gained about the interactions between neighboring molecular gears, we here explore the transmission of rotational motion and energy over larger distances, namely, through a longer chain of gear-like passive "slave" molecules. Such microscopic gears exhibit quite different behaviors compared to rigid cogwheels in the macroscopic world due to their structural flexibility affecting intermolecular interaction. Here, we investigate the capabilities of such gear chains and reveal the mechanisms of the transmission process in terms of both quantum-level density functional theory (DFT) and simple classical mechanics. We find that the transmission of rotation along gear chains depends strongly on the gear-gear distance: short distances can cause tilting of gears and even irregular "creep-then-jump" (or "stick-slip") motion or expulsion of gears; long gear-gear distances cause weak coupling between gears, slipping and skipping. More importantly, for transmission of rotation at intermediate gear-gear distances, our modeling clearly exhibits the relative roles of several important factors: flexibility of gear arms, axles, and supports, as well as resulting rotational delays, slippages, and thermal and other effects. These studies therefore allow better informed design of future molecular machine components involving motors, gears, axles, etc.

摘要

我们之前曾使用从头算模拟工具从理论上探索过分子齿轮的周期性链,其中分子相互耦合并在表面上旋转。基于在相邻分子齿轮之间相互作用方面所获得的知识和经验,我们在此探索旋转运动和能量在更大距离上的传递,即通过更长的类似齿轮的被动“从动”分子链进行传递。由于其结构灵活性影响分子间相互作用,这种微观齿轮与宏观世界中的刚性齿轮相比表现出截然不同的行为。在此,我们研究这种齿轮链的性能,并从量子水平的密度泛函理论(DFT)和简单经典力学两方面揭示传递过程的机制。我们发现,沿着齿轮链的旋转传递强烈依赖于齿轮间的距离:距离较短会导致齿轮倾斜,甚至出现不规则的“先蠕动后跳跃”(或“粘滑”)运动或齿轮被逐出;齿轮间距离较长则会导致齿轮间耦合较弱、打滑和跳跃。更重要的是,对于中等齿轮间距离的旋转传递,我们的建模清楚地展示了几个重要因素的相对作用:齿轮臂、轴和支撑的灵活性,以及由此产生的旋转延迟、打滑以及热效应和其他效应。因此,这些研究有助于更明智地设计未来涉及电机、齿轮、轴等的分子机器部件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验