Precision Health Economics, 11100 Santa Monica Blvd, Suite 500, Los Angeles, CA, 90025, USA.
Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, 90089, USA.
Adv Ther. 2018 May;35(5):671-685. doi: 10.1007/s12325-018-0700-6. Epub 2018 May 3.
Patients with mental and physical health conditions are complex to treat and often use multiple medications. It is unclear how adherence to one medication predicts adherence to others. A predictive relationship could permit less expensive adherence monitoring if overall adherence could be predicted through tracking a single medication.
To test this hypothesis, we examined whether patients with multiple mental and physical illnesses have similar adherence trajectories across medications. Specifically, we conducted a retrospective cohort analysis using health insurance claims data for enrollees who were diagnosed with a serious mental illness, initiated an atypical antipsychotic, as well as an SSRI (to treat serious mental illness), biguanides (to treat type 2 diabetes), or an ACE inhibitor (to treat hypertension). Using group-based trajectory modeling, we estimated adherence patterns based on monthly estimates of the proportion of days covered with each medication. We measured the predictive value of the atypical antipsychotic trajectories to adherence predictions based on patient characteristics and assessed their relative strength with the R-squared goodness of fit metric.
Within our sample of 431,591 patients, four trajectory groups were observed: non-adherent, gradual discontinuation, stop-start, and adherent. The accuracy of atypical antipsychotic adherence for predicting adherence to ACE inhibitors, biguanides, and SSRIs was 44.5, 44.5, and 49.6%, respectively (all p < 0.001 vs. random). We also found that information on patient adherence patterns to atypical antipsychotics was a better predictor of patient adherence to these three medications than would be the case using patient demographic and clinical characteristics alone.
Among patients with multiple chronic mental and physical illnesses, patterns of atypical antipsychotic adherence were useful predictors of adherence patterns to a patient's adherence to ACE inhibitors, biguanides, and SSRIs.
Otsuka Pharmaceutical Development & Commercialization, Inc.
患有精神和身体健康状况的患者的治疗较为复杂,通常会使用多种药物。目前尚不清楚对一种药物的依从性如何预测对其他药物的依从性。如果通过跟踪一种药物可以预测总体依从性,则可以进行更经济的依从性监测。
为了检验这一假设,我们研究了患有多种精神和身体疾病的患者在药物使用方面是否具有相似的依从性轨迹。具体来说,我们使用医疗保险索赔数据进行了回顾性队列分析,纳入了被诊断患有严重精神疾病、开始使用非典型抗精神病药物以及选择性 5-羟色胺再摄取抑制剂(SSRIs,用于治疗严重精神疾病)、双胍类药物(用于治疗 2 型糖尿病)或血管紧张素转换酶抑制剂(ACEI,用于治疗高血压)的患者。我们使用基于群组的轨迹建模方法,根据每种药物的覆盖天数比例的每月估计值来估算依从性模式。我们根据患者特征衡量了非典型抗精神病药物轨迹对依从性预测的预测价值,并使用 R 平方拟合优度度量来评估其相对强度。
在我们的 431591 名患者样本中,观察到了四个轨迹组:不依从、逐渐停药、停停走走和依从。非典型抗精神病药物依从性对 ACEI、双胍类药物和 SSRIs 依从性的预测准确率分别为 44.5%、44.5%和 49.6%(均 P < 0.001 与随机值比较)。我们还发现,与仅使用患者人口统计学和临床特征相比,关于患者对非典型抗精神病药物的依从模式的信息是对患者对这三种药物的依从性进行预测的更好指标。
在患有多种慢性精神和身体疾病的患者中,非典型抗精神病药物依从性模式可以有效预测患者对 ACEI、双胍类药物和 SSRIs 的依从性模式。
大冢制药开发与商业化公司。