Suppr超能文献

利用已有关于效应量的知识或数据进行总体均数的区间估计。

Interval estimation of a population mean using existing knowledge or data on effect sizes.

机构信息

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

出版信息

Stat Methods Med Res. 2019 Jun;28(6):1703-1715. doi: 10.1177/0962280218773537. Epub 2018 May 8.

Abstract

Bayes or empirical Bayes methods to improve inferential accuracy for a population mean has been widely adopted in medical research. As the joint prior distribution of both the mean and variance parameters can be difficult to specify or estimate, most of these methods have relied on certain level of simplifications of the joint prior, which could lead to difficulty in the interpretation of the posterior distribution or compromised inferential accuracy. We propose a framework of interval estimation using existing knowledge or data on the effect size to address this difficulty. Our method has two unique characteristics. First, the interpretation of the interval bears the spirit of both Frequentist and Bayesian thinking. For this reason, it will be called . Second, we define a new quantity, the , which is a key quantity that mediates the construction of the FB interval when the population variance is unknown. A simulation study and a real data example are presented to evaluate and illustrate our method.

摘要

贝叶斯或经验贝叶斯方法已被广泛应用于医学研究中,以提高对总体均值的推断准确性。由于均值和方差参数的联合先验分布难以指定或估计,因此大多数这些方法都依赖于对联合先验的某些简化,这可能导致在后验分布的解释上存在困难或推断准确性受损。我们提出了一个使用关于效应量的现有知识或数据进行区间估计的框架来解决这个问题。我们的方法有两个独特的特点。首先,区间的解释具有频率派和贝叶斯派思维的精神。出于这个原因,它将被称为 。其次,我们定义了一个新的量, ,这是在未知总体方差时构建 FB 区间的关键量。进行了模拟研究和实际数据示例,以评估和说明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验