Suppr超能文献

基于遗传算法优化神经网络的恶性心律失常检测算法研究

[Research on malignant arrhythmia detection algorithm using neural network optimized by genetic algorithm].

作者信息

Yu Ming, Chen Feng, Zhang Guang, Li Liangzhe, Wang Chunchen, Zhan Ningbo, Gu Biao, Wei Jing, Wu Taihu

机构信息

Institute of Medical Equipment, Academy of Military Medical Science, Tianjin 300161, P.R.China.

Institute of Medical Equipment, Academy of Military Medical Science, Tianjin 300161,

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Jun 1;34(3):421-430. doi: 10.7507/1001-5515.201612066.

Abstract

Detection and classification of malignant arrhythmia are key tasks of automated external defibrillators. In this paper, 21 metrics extracted from existing algorithms were studied by retrospective analysis. Based on these metrics, a back propagation neural network optimized by genetic algorithm was constructed. A total of 1,343 electrocardiogram samples were included in the analysis. The results of the experiments indicated that this network had a good performance in classification of sinus rhythm, ventricular fibrillation, ventricular tachycardia and asystole. The balanced accuracy on test dataset reached up to 99.06%. It illustrates that our proposed detection algorithm is obviously superior to existing algorithms. The application of the algorithm in the automated external defibrillators will further improve the reliability of rhythm analysis before defibrillation and ultimately improve the survival rate of cardiac arrest.

摘要

恶性心律失常的检测与分类是自动体外除颤器的关键任务。本文通过回顾性分析研究了从现有算法中提取的21个指标。基于这些指标,构建了一个由遗传算法优化的反向传播神经网络。分析共纳入1343份心电图样本。实验结果表明,该网络在窦性心律、心室颤动、室性心动过速和心搏停止的分类中表现良好。测试数据集上的平衡准确率高达99.06%。这表明我们提出的检测算法明显优于现有算法。该算法在自动体外除颤器中的应用将进一步提高除颤前心律分析的可靠性,并最终提高心脏骤停的生存率。

相似文献

1
[Research on malignant arrhythmia detection algorithm using neural network optimized by genetic algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Jun 1;34(3):421-430. doi: 10.7507/1001-5515.201612066.
2
Sensitivity and specificity of an automated external defibrillator algorithm designed for pediatric patients.
Resuscitation. 2008 Feb;76(2):168-74. doi: 10.1016/j.resuscitation.2007.06.032. Epub 2007 Aug 31.
3
Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features.
Comput Biol Med. 2019 Dec;115:103446. doi: 10.1016/j.compbiomed.2019.103446. Epub 2019 Sep 18.
5
6
Deep Feature Learning for Sudden Cardiac Arrest Detection in Automated External Defibrillators.
Sci Rep. 2018 Nov 21;8(1):17196. doi: 10.1038/s41598-018-33424-9.
7
Arrhythmias in the intensive care patient.
Curr Opin Crit Care. 2003 Oct;9(5):345-55. doi: 10.1097/00075198-200310000-00003.
9
Use of automated external defibrillators in cardiac arrest: an evidence-based analysis.
Ont Health Technol Assess Ser. 2005;5(19):1-29. Epub 2005 Dec 1.
10
Prescribing an automated external defibrillator for children at increased risk of sudden arrhythmic death.
Cardiol Young. 2017 Sep;27(7):1271-1279. doi: 10.1017/S1047951117000026. Epub 2017 Jun 13.

引用本文的文献

1
[Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):848-857. doi: 10.7507/1001-5515.202101054.

本文引用的文献

1
Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators.
PLoS One. 2016 Jul 21;11(7):e0159654. doi: 10.1371/journal.pone.0159654. eCollection 2016.
2
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16.
4
Detection of life-threatening arrhythmias using feature selection and support vector machines.
IEEE Trans Biomed Eng. 2014 Mar;61(3):832-40. doi: 10.1109/TBME.2013.2290800. Epub 2013 Nov 13.
5
Ventricular fibrillation and tachycardia classification using a machine learning approach.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1607-13. doi: 10.1109/TBME.2013.2275000. Epub 2013 Jul 26.
6
Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter.
Physiol Meas. 2008 Jan;29(1):15-32. doi: 10.1088/0967-3334/29/1/002. Epub 2007 Dec 10.
7
Detecting ventricular fibrillation by time-delay methods.
IEEE Trans Biomed Eng. 2007 Jan;54(1):174-7. doi: 10.1109/TBME.2006.880909.
9
Real time detection of ventricular fibrillation and tachycardia.
Physiol Meas. 2004 Oct;25(5):1167-78. doi: 10.1088/0967-3334/25/5/007.
10
Comparison of five algorithms for the detection of ventricular fibrillation from the surface ECG.
Physiol Meas. 2000 Nov;21(4):429-39. doi: 10.1088/0967-3334/21/4/301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验