Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
Bioelectrochemistry. 2018 Oct;123:156-161. doi: 10.1016/j.bioelechem.2018.05.003. Epub 2018 May 5.
Standard [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF-Hase) catalyzes the uptake and production of hydrogen (H) and is a promising biocatalyst for future energy devices. However, DvMF-Hase experiences oxidative inactivation under oxidative stress to generate Ni-A and Ni-B states. It takes a long time to reactivate the Ni-A state by chemical reduction, whereas the Ni-B state is quickly reactivated under reducing conditions. Oxidative inhibition limits the application of DvMF-Hase in practical devices. In this research, we constructed a mediated-electron-transfer system by co-immobilizing DvMF-Hase and a viologen redox polymer (VP) on electrodes. The system can avoid oxidative inactivation into the Ni-B state at high electrode potentials and rapidly reactivate the Ni-A state by electrochemical reduction of VP. H oxidation and H reduction were realized by adjusting the pH from a thermodynamic viewpoint. Using carbon felt as a working-electrode material, high current densities-up to (200 ± 70) and -(100 ± 9) mA cm for the H-oxidation and H-reduction reactions, respectively-were attained.
来自普通脱硫弧菌(DvMF-Hase)的标准[NiFe]-氢化酶能够催化氢气的吸收和产生,是未来能源设备中有前途的生物催化剂。然而,DvMF-Hase 在氧化应激下会经历氧化失活,生成 Ni-A 和 Ni-B 状态。通过化学还原将 Ni-A 状态重新激活需要很长时间,而在还原条件下 Ni-B 状态会迅速重新激活。氧化抑制限制了 DvMF-Hase 在实际设备中的应用。在这项研究中,我们通过将 DvMF-Hase 和一个紫精氧化还原聚合物(VP)共同固定在电极上,构建了一个介体电子转移系统。该系统可以避免在高电极电势下氧化失活到 Ni-B 状态,并通过 VP 的电化学还原快速重新激活 Ni-A 状态。从热力学的角度来看,通过调节 pH 值,可以实现 H 氧化和 H 还原。使用碳纤维毡作为工作电极材料,分别实现了高达(200±70)和(100±9)mA·cm 的 H 氧化和 H 还原反应的高电流密度。