Kim Chang-Hyun
Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea.
Nanomaterials (Basel). 2018 May 14;8(5):328. doi: 10.3390/nano8050328.
Nanostructured and chemically modified graphene-based nanomaterials possess intriguing properties for their incorporation as an active component in a wide spectrum of optoelectronic architectures. From a technological point of view, this aspect brings many new opportunities to the now well-known atomically thin carbon sheet, multiplying its application areas beyond transparent electrodes. This article gives an overview of fundamental concepts, theoretical backgrounds, design principles, technological implications, and recent advances in semiconductor devices that integrate nanostructured graphene materials into their active region. Starting from the unique electronic nature of graphene, a physical understanding of finite-size effects, non-idealities, and functionalizing mechanisms is established. This is followed by the conceptualization of hybridized films, addressing how the insertion of graphene can modulate or improve material properties. Importantly, it provides general guidelines for designing new materials and devices with specific characteristics. Next, a number of notable devices found in the literature are highlighted. It provides practical information on material preparation, device fabrication, and optimization for high-performance optoelectronics with a graphene hybrid channel. Finally, concluding remarks are made with the summary of the current status, scientific issues, and meaningful approaches to realizing next-generation technologies.
纳米结构和化学修饰的石墨烯基纳米材料具有引人入胜的特性,可作为活性成分融入广泛的光电子架构中。从技术角度来看,这一方面为如今广为人知的原子级薄碳片带来了许多新机遇,使其应用领域超越了透明电极。本文概述了将纳米结构石墨烯材料集成到其有源区域的半导体器件的基本概念、理论背景、设计原则、技术影响和最新进展。从石墨烯独特的电子性质出发,建立了对有限尺寸效应、非理想性和功能化机制的物理理解。接下来是对混合薄膜的概念化,探讨石墨烯的插入如何调节或改善材料性能。重要的是,它为设计具有特定特性的新材料和器件提供了一般指导方针。接下来,重点介绍了文献中发现的一些著名器件。它提供了有关材料制备、器件制造以及使用石墨烯混合通道实现高性能光电子器件优化的实用信息。最后,对当前状况、科学问题以及实现下一代技术的有意义方法进行了总结并给出结论。