Suppr超能文献

工作于1700纳米的紧凑型基于光纤的多光子内窥镜。

Compact fiber-based multi-photon endoscope working at 1700 nm.

作者信息

Akhoundi Farhad, Qin Yukun, Peyghambarian N, Barton Jennifer K, Kieu Khanh

机构信息

College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Biomed Opt Express. 2018 Apr 25;9(5):2326-2335. doi: 10.1364/BOE.9.002326. eCollection 2018 May 1.

Abstract

We present the design, implementation and performance analysis of a compact multi-photon endoscope based on a piezo electric scanning tube. A miniature objective lens with a long working distance and a high numerical aperture (≈ 0.5) is designed to provide a diffraction limited spot size. Furthermore, a 1700 wavelength femtosecond fiber laser is used as an excitation source to overcome the scattering of biological tissues and reduce water absorption. Therefore, the novel optical system along with the unique wavelength allows us to increase the imaging depth. We demonstrate that the endoscope is capable of performing third and second harmonic generation (THG/SHG) and three-photon excitation fluorescence (3PEF) imaging over a large field of view (> 400 ) with high lateral resolution (2.2 ). The compact and lightweight probe design makes it suitable for minimally-invasive in-vivo imaging as a potential alternative to surgical biopsies.

摘要

我们展示了一种基于压电扫描管的紧凑型多光子内窥镜的设计、实现及性能分析。设计了一种具有长工作距离和高数值孔径(≈ 0.5)的微型物镜,以提供衍射极限光斑尺寸。此外,使用1700波长的飞秒光纤激光器作为激发源,以克服生物组织的散射并减少水吸收。因此,新颖的光学系统以及独特的波长使我们能够增加成像深度。我们证明,该内窥镜能够在大视场(> 400 )上以高横向分辨率(2.2 )进行三次谐波和二次谐波产生(THG/SHG)以及三光子激发荧光(3PEF)成像。紧凑轻便的探头设计使其适合作为手术活检的潜在替代方案用于微创体内成像。

相似文献

1
Compact fiber-based multi-photon endoscope working at 1700 nm.
Biomed Opt Express. 2018 Apr 25;9(5):2326-2335. doi: 10.1364/BOE.9.002326. eCollection 2018 May 1.
2
Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber.
Biomed Opt Express. 2013 Sep 17;4(10):2187-95. doi: 10.1364/BOE.4.002187. eCollection 2013.
5
6
Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17598-603. doi: 10.1073/pnas.1114746108. Epub 2011 Oct 17.
7
Rigid and high-numerical-aperture two-photon fluorescence endoscope.
Appl Opt. 2009 Jun 20;48(18):3396-400. doi: 10.1364/ao.48.003396.
8
Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope.
Biomed Opt Express. 2013 Apr 1;4(5):652-8. doi: 10.1364/BOE.4.000652. Print 2013 May 1.
9
High-resolution multimodal flexible coherent Raman endoscope.
Light Sci Appl. 2018 May 30;7:10. doi: 10.1038/s41377-018-0003-3. eCollection 2018.

引用本文的文献

1
Video-rate two-photon microendoscopy using second harmonic resonance fiber scanning.
Biomed Opt Express. 2024 Oct 11;15(11):6324-6339. doi: 10.1364/BOE.534399. eCollection 2024 Nov 1.
2
Label-free multimodal imaging with simultaneous two-photon and three-photon microscopy and kernel-based nonlinear scaling denoising.
Biomed Opt Express. 2023 Dec 6;15(1):114-130. doi: 10.1364/BOE.504550. eCollection 2024 Jan 1.
3
Two-Photon Imaging for Non-Invasive Corneal Examination.
Sensors (Basel). 2022 Dec 11;22(24):9699. doi: 10.3390/s22249699.
4
Label-free highly multimodal nonlinear endoscope.
Opt Express. 2022 Jul 4;30(14):25020-25033. doi: 10.1364/OE.462361.
5
Effect of an Added Mass on the Vibration Characteristics for Raster Scanning of a Cantilevered Optical Fiber.
J Eng Sci Med Diagn Ther. 2021 May 1;4(2):021007. doi: 10.1115/1.4050691. Epub 2021 Apr 22.
7
Dual-wavelength multimodal multiphoton microscope with SMA-based depth scanning.
Biomed Opt Express. 2022 Apr 11;13(5):2754-2771. doi: 10.1364/BOE.456390. eCollection 2022 May 1.
8
Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo.
J Lipid Res. 2022 May;63(5):100207. doi: 10.1016/j.jlr.2022.100207. Epub 2022 Apr 6.
9
Two-Photon Endoscopy: State of the Art and Perspectives.
Mol Imaging Biol. 2023 Feb;25(1):3-17. doi: 10.1007/s11307-021-01665-2. Epub 2021 Nov 15.
10
Recent Advances in Biomedical Photonic Sensors: A Focus on Optical-Fibre-Based Sensing.
Sensors (Basel). 2021 Sep 28;21(19):6469. doi: 10.3390/s21196469.

本文引用的文献

1
Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice.
Nat Methods. 2017 Jul;14(7):713-719. doi: 10.1038/nmeth.4305. Epub 2017 May 29.
2
Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy.
Biomed Opt Express. 2016 Jun 28;7(7):2849-60. doi: 10.1364/BOE.7.002849. eCollection 2016 Jul 1.
3
Third harmonic generation imaging for fast, label-free pathology of human brain tumors.
Biomed Opt Express. 2016 Apr 18;7(5):1889-904. doi: 10.1364/BOE.7.001889. eCollection 2016 May 1.
4
Label-free multi-photon imaging of dysplasia in Barrett's esophagus.
Biomed Opt Express. 2015 Dec 16;7(1):148-57. doi: 10.1364/BOE.7.000148. eCollection 2016 Jan 1.
8
Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator.
J Biomed Opt. 2014 Jun;19(6):066010. doi: 10.1117/1.JBO.19.6.066010.
9
Recent Advances in Fiber Lasers for Nonlinear Microscopy.
Nat Photonics. 2013 Nov 1;7. doi: 10.1038/nphoton.2013.284.
10
three-photon microscopy of subcortical structures within an intact mouse brain.
Nat Photonics. 2013 Mar 1;7(3):205-9. doi: 10.1038/nphoton.2012.336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验