Suppr超能文献

命运的十字路口——胎儿性腺中的体细胞谱系特化

At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad.

机构信息

Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina.

Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

出版信息

Endocr Rev. 2018 Oct 1;39(5):739-759. doi: 10.1210/er.2018-00010.

Abstract

The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.

摘要

生殖内分泌系统在男性和女性之间有很大的不同。这种内分泌环境的性别二态性源于胎儿期性腺中体细胞的性别特异性分化。大多数性腺体细胞来自肾上腺性腺原基。肾上腺和性腺原基分离后,在性腺性别决定过程中,性腺体细胞开始进行性别特异性分化,决定支持细胞谱系:睾丸中的支持细胞谱系与卵巢中的颗粒细胞。然后,支持细胞谱系促进类固醇生成细胞谱系(睾丸中的间质细胞和卵巢中的卵泡细胞)的分化。这些细胞类型的适当分化定义了对生殖细胞发育、激素产生和生殖道建立至关重要的体细胞环境。性腺体细胞谱系指定和功能的损伤可导致人类性发育障碍(DSD)。使用基因修饰的小鼠模型成功地模拟了人类 DSD 和性腺发育过程。在这篇综述中,我们重点关注从胚胎中肾上腺性腺原基的初始形成阶段到成年后性腺完全分化时维持体细胞身份的命运决定过程。

相似文献

1
At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad.
Endocr Rev. 2018 Oct 1;39(5):739-759. doi: 10.1210/er.2018-00010.
2
Characterizing the bipotential mammalian gonad.
Curr Top Dev Biol. 2019;134:167-194. doi: 10.1016/bs.ctdb.2019.01.002. Epub 2019 Jan 30.
4
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing.
Cell Rep. 2018 Feb 6;22(6):1589-1599. doi: 10.1016/j.celrep.2018.01.043.
7
Mapping lineage progression of somatic progenitor cells in the mouse fetal testis.
Development. 2016 Oct 15;143(20):3700-3710. doi: 10.1242/dev.135756. Epub 2016 Sep 12.
8
DMRT1 prevents female reprogramming in the postnatal mammalian testis.
Nature. 2011 Jul 20;476(7358):101-4. doi: 10.1038/nature10239.
9
Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression.
Development. 2017 Jan 1;144(1):44-53. doi: 10.1242/dev.144105. Epub 2016 Nov 25.
10

引用本文的文献

1
Defining the cell and molecular origins of the primate ovarian reserve.
Nat Commun. 2025 Aug 26;16(1):7539. doi: 10.1038/s41467-025-62702-0.
2
Differences of sex development.
Nat Rev Dis Primers. 2025 Jul 31;11(1):54. doi: 10.1038/s41572-025-00637-y.
3
NR2F2 is required in the embryonic testis for fetal Leydig cell development.
Elife. 2025 Jul 10;14:RP103783. doi: 10.7554/eLife.103783.
4
AMHY and sex determination in egg-laying mammals.
Genome Biol. 2025 May 27;26(1):144. doi: 10.1186/s13059-025-03546-1.
8
Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence.
Life Med. 2025 Jan 23;4(1):lnaf004. doi: 10.1093/lifemedi/lnaf004. eCollection 2025 Feb.
10
Defining the cell and molecular origins of the primate ovarian reserve.
bioRxiv. 2025 Jan 21:2025.01.21.634052. doi: 10.1101/2025.01.21.634052.

本文引用的文献

1
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing.
Cell Rep. 2018 Feb 6;22(6):1589-1599. doi: 10.1016/j.celrep.2018.01.043.
2
Testicular organoids: a new model to study the testicular microenvironment in vitro?
Hum Reprod Update. 2018 Mar 1;24(2):176-191. doi: 10.1093/humupd/dmx036.
3
Functional Implications of LH/hCG Receptors in Pregnancy-Induced Cushing Syndrome.
J Endocr Soc. 2017 Jan 12;1(1):57-71. doi: 10.1210/js.2016-1021. eCollection 2017 Jan 1.
6
Microphysiologic systems in female reproductive biology.
Exp Biol Med (Maywood). 2017 Nov;242(17):1690-1700. doi: 10.1177/1535370217697386. Epub 2017 Mar 8.
7
Luteinizing Hormone and GATA4 Action in the Adrenocortical Tumorigenesis of Gonadectomized Female Mice.
Cell Physiol Biochem. 2017;43(3):1064-1076. doi: 10.1159/000481718. Epub 2017 Oct 4.
8
Testis Determination Requires a Specific FGFR2 Isoform to Repress FOXL2.
Endocrinology. 2017 Nov 1;158(11):3832-3843. doi: 10.1210/en.2017-00674.
9
The Role of Sequential BMP Signaling in Directing Human Embryonic Stem Cells to Bipotential Gonadal Cells.
J Clin Endocrinol Metab. 2017 Nov 1;102(11):4303-4314. doi: 10.1210/jc.2017-01469.
10
Sertoli Cell Number Defines and Predicts Germ and Leydig Cell Population Sizes in the Adult Mouse Testis.
Endocrinology. 2017 Sep 1;158(9):2955-2969. doi: 10.1210/en.2017-00196.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验