Department of Pharmacology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Nucleic Acids Res. 2018 Jul 2;46(W1):W114-W120. doi: 10.1093/nar/gky407.
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
全基因组关联研究已经为许多人类复杂性状产生了超过数千个易感基因座,但对于大多数这些关联,真正的因果变异仍然未知。组织/细胞类型特异性预测和优先考虑非编码调控变异将有助于识别特定复杂疾病和性状的因果变异和潜在的发病机制。通过利用最近的大规模功能基因组学/表观基因组学数据,我们开发了一个直观的网络服务器 GWAS4D(http://mulinlab.tmu.edu.cn/gwas4d 或 http://mulinlab.org/gwas4d),它系统地评估 GWAS 信号并识别特定于上下文的调控变异。更新后的网络服务器包括六个主要功能:(i)使用我们的新算法更新了调控变异优先级排序方法;(ii)包含 127 种组织/细胞类型特异性表观基因组数据;(iii)整合了来自 13 个公共资源的 1480 个转录因子的基序;(iv)统一处理 Hi-C 数据,并在 60 种组织/细胞类型中以 5kb 的分辨率生成显著的相互作用;(v)添加了全面的非编码变异功能注释;(vi)配备了 SNP 靶相互作用的高度交互可视化功能。使用 161 个冠心病风险基因座的 GWAS 精细映射集,我们证明了 GWAS4D 能够有效地优先考虑疾病因果调节变异。