Institute of Multiscale Thermofluids, School of Engineering, University of Edinburgh, Edinburgh, UK.
Centre for Clinical Brain Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
Sci Rep. 2018 May 18;8(1):7877. doi: 10.1038/s41598-018-26063-7.
Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant, C . These methods exhibit larger average brain cooling (from 0.56 °C ± <0.01 °C to 0.58 °C ± <0.01 °C) compared with previous models (0.39 °C) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °C ± <0.01 °C to 0.45 °C ± <0.01 °C) compared to previous models (0.11 °C) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °C) can be reached in core regions of neonatal models using scalp cooling alone.
大脑血流的宏观建模有助于确定在头部创伤时热干预的影响,以减轻组织损伤。本工作提出了一个使用 3D 流固耦合多孔域与相交的 1D 动脉和静脉树的生物热模型。该组合血管多孔(VaPor)模型通过使用从 MRI 数据提取的脉管系统来解决脑血流和能量方程,包括代谢产生的热量,并使用树生成算法进行扩展。逆流预计会增加大脑内的热传递,并通过血管结构或通过流反转来强制,由流反转常数 C 表示。与以前的模型(0.39°C)相比,当头皮温度降低时,这些方法表现出更大的平均大脑冷却(从 0.56°C±<0.01°C 到 0.58°C±<0.01°C)。由于包括逆流冷却效应,核心大脑温度的降低更为明显(从 0.29°C±<0.01°C 到 0.45°C±<0.01°C),与以前的模型(0.11°C)相比。VaPor 模型还预测,仅通过头皮冷却就可以使新生儿模型的核心区域达到低温平均温度(<36°C)。