Suppr超能文献

通过深度强化学习利用涡旋实现高效集体游动。

Efficient collective swimming by harnessing vortices through deep reinforcement learning.

机构信息

Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland.

Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5849-5854. doi: 10.1073/pnas.1800923115. Epub 2018 May 21.

Abstract

Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

摘要

鱼在成群游动时会在同伴的尾涡中穿行于充满机械能的复杂流场。它们的成群游动行为与进化优势相关,包括节省能量,但潜在的物理机制仍不清楚。我们表明,鱼可以通过将自己置于其他游泳者尾流中的适当位置,并明智地拦截它们释放的漩涡,从而提高持续推进效率。这种游动策略导致集体节能,并通过与深度学习强化学习 (RL) 算法相结合的高保真度流模拟来揭示。RL 算法依赖于由深度递归神经网络定义的策略,带有长短时记忆单元,对于捕捉鱼和涡旋流场之间双向相互作用的不稳定性至关重要。令人惊讶的是,我们发现,与领导者成一直线游泳并不与追随者的能量收益相关。相反,“聪明的游泳者”将自己置于相对于领导者轴的非中心位置,并改变身体形状以与迎面而来的漩涡的动量同步,从而在不牺牲领导者的情况下提高游泳效率。结果证实,鱼可以收获漩涡中储存的能量,并支持这样的假设,即编队游泳在能量上是有利的。此外,这项研究表明,深度学习 RL 可以为复杂的不稳定和涡旋流场生成导航算法,这对自主机器人群的节能具有广阔的应用前景。

相似文献

1
Efficient collective swimming by harnessing vortices through deep reinforcement learning.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5849-5854. doi: 10.1073/pnas.1800923115. Epub 2018 May 21.
2
Synchronisation through learning for two self-propelled swimmers.
Bioinspir Biomim. 2017 Mar 29;12(3):036001. doi: 10.1088/1748-3190/aa6311.
3
In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
Elife. 2023 Feb 6;12:e81392. doi: 10.7554/eLife.81392.
4
Learning to school in dense configurations with multi-agent deep reinforcement learning.
Bioinspir Biomim. 2022 Nov 16;18(1). doi: 10.1088/1748-3190/ac9fb5.
5
Hydrodynamic advantages of in-line schooling.
Bioinspir Biomim. 2021 May 11;16(4). doi: 10.1088/1748-3190/abe137.
6
Disentangling the functional roles of morphology and motion in the swimming of fish.
Integr Comp Biol. 2010 Dec;50(6):1140-54. doi: 10.1093/icb/icq057. Epub 2010 May 24.
7
The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
Bioinspir Biomim. 2015 Oct 8;10(5):056018. doi: 10.1088/1748-3190/10/5/056018.
8
The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
J Exp Biol. 2003 Mar;206(Pt 6):1059-73. doi: 10.1242/jeb.00209.
9
Flow interactions between uncoordinated flapping swimmers give rise to group cohesion.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2419-2424. doi: 10.1073/pnas.1816098116. Epub 2019 Jan 30.

引用本文的文献

1
Optimizing metachronal paddling with reinforcement learning at low Reynolds number.
Eur Phys J E Soft Matter. 2025 Aug 8;48(8-9):48. doi: 10.1140/epje/s10189-025-00511-5.
2
Sensing flow gradients is necessary for learning autonomous underwater navigation.
Nat Commun. 2025 Mar 28;16(1):3044. doi: 10.1038/s41467-025-58125-6.
4
Mapping spatial patterns to energetic benefits in groups of flow-coupled swimmers.
Elife. 2024 Dec 19;13:RP96129. doi: 10.7554/eLife.96129.
5
Energy conservation by collective movement in schooling fish.
Elife. 2024 Feb 20;12:RP90352. doi: 10.7554/eLife.90352.
6
Target-Following Control of a Biomimetic Autonomous System Based on Predictive Reinforcement Learning.
Biomimetics (Basel). 2024 Jan 4;9(1):0. doi: 10.3390/biomimetics9010033.
7
Effects of Different Motion Parameters on the Interaction of Fish School Subsystems.
Biomimetics (Basel). 2023 Oct 26;8(7):510. doi: 10.3390/biomimetics8070510.
8
Collective foraging of active particles trained by reinforcement learning.
Sci Rep. 2023 Oct 10;13(1):17055. doi: 10.1038/s41598-023-44268-3.
9
Physics-informed reinforcement learning for motion control of a fish-like swimming robot.
Sci Rep. 2023 Jul 3;13(1):10754. doi: 10.1038/s41598-023-36399-4.
10
Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination.
Sci Rep. 2023 Jun 9;13(1):9397. doi: 10.1038/s41598-023-36305-y.

本文引用的文献

1
Simple phalanx pattern leads to energy saving in cohesive fish schooling.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9599-9604. doi: 10.1073/pnas.1706503114. Epub 2017 Aug 24.
2
A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
Nature. 2017 Jul 27;547(7664):445-448. doi: 10.1038/nature23014. Epub 2017 Jul 12.
3
Flow Navigation by Smart Microswimmers via Reinforcement Learning.
Phys Rev Lett. 2017 Apr 14;118(15):158004. doi: 10.1103/PhysRevLett.118.158004. Epub 2017 Apr 12.
4
Synchronisation through learning for two self-propelled swimmers.
Bioinspir Biomim. 2017 Mar 29;12(3):036001. doi: 10.1088/1748-3190/aa6311.
5
Learning to soar in turbulent environments.
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4877-84. doi: 10.1073/pnas.1606075113. Epub 2016 Aug 1.
6
The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
Bioinspir Biomim. 2015 Oct 8;10(5):056018. doi: 10.1088/1748-3190/10/5/056018.
7
Human-level control through deep reinforcement learning.
Nature. 2015 Feb 26;518(7540):529-33. doi: 10.1038/nature14236.
8
From behavioural analyses to models of collective motion in fish schools.
Interface Focus. 2012 Dec 6;2(6):693-707. doi: 10.1098/rsfs.2012.0033. Epub 2012 Oct 3.
9
Animal orientation strategies for movement in flows.
Curr Biol. 2011 Oct 25;21(20):R861-70. doi: 10.1016/j.cub.2011.08.014.
10
Aerobic capacity influences the spatial position of individuals within fish schools.
Proc Biol Sci. 2012 Jan 22;279(1727):357-64. doi: 10.1098/rspb.2011.1006. Epub 2011 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验