Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Structural Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5419-E5428. doi: 10.1073/pnas.1804835115. Epub 2018 May 21.
Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus , and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3β-hydroxysteroid dehydrogenase/Δ isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpressing the tomato in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity.
在广泛的植物中发现了数千种专门的甾体代谢物。这些包括甾体糖苷生物碱(SGAs),主要由大多数 属的物种产生,以及属于甾体皂苷类的代谢物,它们广泛存在于植物界。SGAs 在植物中起保护作用,对哺乳动物具有很强的活性,包括对人类的抗营养作用。C-5,6 位置双键的存在或不存在(分别为不饱和和饱和)在该代谢物类中产生了巨大的结构多样性,并决定了 SGA 毒性的程度。多年来,人们认为不饱和 SGAs 中双键的消除是通过单一的加氢步骤发生的。与之前的假设相反,在这里,我们表明番茄 GLYCOALKALOID METABOLISM25(GAME25),一种短链脱氢酶/还原酶,催化了三个预期反应中的第一个,以将脱氢托马定中的 C-5,6 双键还原为托马定。重组 GAME25 酶不仅对各种甾体生物碱糖苷配基底物,而且对甾体皂苷糖苷配基表现出 3β-羟甾族脱氢酶/Δ异构酶活性。值得注意的是,下调使整个番茄 SGA 库转向脱氢-SGA 分支,而不是形成通常丰富的饱和α-茄碱衍生物。在番茄植物中过表达番茄 导致成熟果实中α-茄碱的显著积累,而在栽培茄子中的异源表达则产生饱和 SGAs 和非典型饱和甾体皂苷糖苷。这项研究表明,植物中甾体代谢物的单一支架修饰如何导致广泛的结构多样性和产物毒性的调节。