Suppr超能文献

相似文献

1
Relationship between Excited State Lifetime and Isomerization Quantum Yield in Animal Rhodopsins: Beyond the One-Dimensional Landau-Zener Model.
J Phys Chem Lett. 2018 Jun 21;9(12):3315-3322. doi: 10.1021/acs.jpclett.8b01062. Epub 2018 Jun 6.
2
Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1714-9. doi: 10.1073/pnas.1309508111. Epub 2014 Jan 21.
3
Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin.
J Am Chem Soc. 2008 Mar 19;130(11):3382-8. doi: 10.1021/ja0749082. Epub 2008 Feb 27.
5
Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
J Phys Chem Lett. 2017 Oct 19;8(20):5222-5227. doi: 10.1021/acs.jpclett.7b02344. Epub 2017 Oct 11.
7
Mechanistic origin of the vibrational coherence accompanying the photoreaction of biomimetic molecular switches.
Chemistry. 2012 Nov 26;18(48):15296-304. doi: 10.1002/chem.201201430. Epub 2012 Nov 6.
8
Molecular bases for the selection of the chromophore of animal rhodopsins.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15297-302. doi: 10.1073/pnas.1510262112. Epub 2015 Nov 25.
10
100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin.
Phys Chem Chem Phys. 2015 Oct 14;17(38):25429-39. doi: 10.1039/c5cp04353k.

引用本文的文献

1
In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling.
Cell Commun Signal. 2024 Aug 8;22(1):394. doi: 10.1186/s12964-024-01753-0.
2
Tracking the conical intersection dynamics for the photoinduced Jahn-Teller switch of a Mn(iii) complex.
Chem Sci. 2024 Jun 27;15(30):11956-11964. doi: 10.1039/d4sc00145a. eCollection 2024 Jul 31.
4
Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores.
Chemistry. 2021 Nov 25;27(66):16389-16400. doi: 10.1002/chem.202102383. Epub 2021 Oct 28.
5
a-ARM: Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement.
J Chem Theory Comput. 2019 May 14;15(5):3134-3152. doi: 10.1021/acs.jctc.9b00061. Epub 2019 Apr 12.

本文引用的文献

1
Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.
Nat Chem. 2018 Apr;10(4):449-455. doi: 10.1038/s41557-018-0014-y. Epub 2018 Mar 19.
2
Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores.
Chem Rev. 2017 Nov 22;117(22):13502-13565. doi: 10.1021/acs.chemrev.7b00177. Epub 2017 Oct 30.
3
Non-adiabatic transition probability dependence on conical intersection topography.
J Chem Phys. 2016 Nov 21;145(19):194104. doi: 10.1063/1.4967259.
5
Local vibrational coherences drive the primary photochemistry of vision.
Nat Chem. 2015 Dec;7(12):980-6. doi: 10.1038/nchem.2398. Epub 2015 Nov 16.
6
Simultaneous Solvent and Counterion Effects on the Absorption Properties of a Model of the Rhodopsin Chromophore.
J Chem Theory Comput. 2013 Mar 12;9(3):1548-56. doi: 10.1021/ct301090v. Epub 2013 Feb 28.
7
Direct QM/MM excited-state dynamics of retinal protonated Schiff base in isolation and methanol solution.
J Phys Chem B. 2015 Jan 22;119(3):704-14. doi: 10.1021/jp5038798. Epub 2014 Sep 17.
8
Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1714-9. doi: 10.1073/pnas.1309508111. Epub 2014 Jan 21.
9
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Chem Rev. 2014 Jan 8;114(1):126-63. doi: 10.1021/cr4003769. Epub 2013 Dec 23.
10
Nonadiabatic photodynamics of a retinal model in polar and nonpolar environment.
J Phys Chem A. 2013 Apr 4;117(13):2790-9. doi: 10.1021/jp400401f. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验