El-Tahawy Mohsen M T, Nenov Artur, Weingart Oliver, Olivucci Massimo, Garavelli Marco
Dipartimento di Chimica Industriale "Toso Montanari" , Università degli Studi di Bologna , Viale del Risorgimento , 4I-40136 Bologna , Italy.
Chemistry Department, Faculty of Science , Damanhour University , Damanhour 22511 , Egypt.
J Phys Chem Lett. 2018 Jun 21;9(12):3315-3322. doi: 10.1021/acs.jpclett.8b01062. Epub 2018 Jun 6.
We show that the speed of the chromophore photoisomerization of animal rhodopsins is not a relevant control knob for their light sensitivity. This result is at odds with the momentum-driven tunnelling rationale (i.e., assuming a one-dimensional Landau-Zener model for the decay: Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. London, Ser. A 1932, 137 (833), 696-702) holding that a faster nuclear motion through the conical intersection translates into a higher quantum yield and, thus, light sensitivity. Instead, a model based on the phase-matching of specific excited state vibrational modes should be considered. Using extensive semiclassical hybrid quantum mechanics/molecular mechanics trajectory computations to simulate the photoisomerization of three animal rhodopsin models (visual rhodopsin, squid rhodopsin and human melanopsin), we also demonstrate that phase-matching between three different modes (the reactive carbon and hydrogen twisting coordinates and the bond length alternation mode) is required to achieve high quantum yields. In fact, such "phase-matching" mechanism explains the computational results and provides a tool for the prediction of the photoisomerization outcome in retinal proteins.
我们表明,动物视紫红质发色团的光异构化速度并非其光敏感性的相关控制旋钮。这一结果与动量驱动隧穿原理(即假设衰变的一维朗道 - 齐纳模型:齐纳,C. 能级的非绝热交叉。《伦敦皇家学会学报》,A辑1932年,137(833),696 - 702)相悖,该原理认为通过锥形交叉点的更快核运动转化为更高的量子产率,进而转化为更高的光敏感性。相反,应考虑基于特定激发态振动模式相位匹配的模型。通过广泛的半经典混合量子力学/分子力学轨迹计算来模拟三种动物视紫红质模型(视觉视紫红质、鱿鱼视紫红质和人类黑视蛋白)的光异构化,我们还证明,需要三种不同模式(反应性碳和氢的扭转坐标以及键长交替模式)之间的相位匹配才能实现高量子产率。事实上,这种“相位匹配”机制解释了计算结果,并为预测视网膜蛋白中的光异构化结果提供了一种工具。