IRISA, Univ Rennes, Inria, CNRS, Rennes, France.
ECOBIO, Univ Rennes, CNRS, Rennes, France.
PLoS Comput Biol. 2018 May 23;14(5):e1006146. doi: 10.1371/journal.pcbi.1006146. eCollection 2018 May.
Genome-scale metabolic models have become the tool of choice for the global analysis of microorganism metabolism, and their reconstruction has attained high standards of quality and reliability. Improvements in this area have been accompanied by the development of some major platforms and databases, and an explosion of individual bioinformatics methods. Consequently, many recent models result from "à la carte" pipelines, combining the use of platforms, individual tools and biological expertise to enhance the quality of the reconstruction. Although very useful, introducing heterogeneous tools, that hardly interact with each other, causes loss of traceability and reproducibility in the reconstruction process. This represents a real obstacle, especially when considering less studied species whose metabolic reconstruction can greatly benefit from the comparison to good quality models of related organisms. This work proposes an adaptable workspace, AuReMe, for sustainable reconstructions or improvements of genome-scale metabolic models involving personalized pipelines. At each step, relevant information related to the modifications brought to the model by a method is stored. This ensures that the process is reproducible and documented regardless of the combination of tools used. Additionally, the workspace establishes a way to browse metabolic models and their metadata through the automatic generation of ad-hoc local wikis dedicated to monitoring and facilitating the process of reconstruction. AuReMe supports exploration and semantic query based on RDF databases. We illustrate how this workspace allowed handling, in an integrated way, the metabolic reconstructions of non-model organisms such as an extremophile bacterium or eukaryote algae. Among relevant applications, the latter reconstruction led to putative evolutionary insights of a metabolic pathway.
基因组规模代谢模型已成为微生物代谢全局分析的首选工具,其重建已达到高质量和可靠性的高标准。在这方面的改进伴随着一些主要平台和数据库的发展,以及单个生物信息学方法的爆炸式增长。因此,许多最近的模型都是通过“à la carte”流水线构建的,结合使用平台、单个工具和生物学专业知识来提高重建的质量。虽然非常有用,但引入几乎不相互交互的异构工具会导致重建过程中可追溯性和可重复性的损失。对于研究较少的物种来说,这是一个真正的障碍,因为它们的代谢重建可以从与相关生物的高质量模型的比较中受益匪浅。这项工作提出了一个可适应的工作空间 AuReMe,用于涉及个性化流水线的基因组规模代谢模型的可持续重建或改进。在每个步骤中,都会存储与方法对模型进行的修改相关的相关信息。这确保了无论使用的工具组合如何,过程都是可重复和记录的。此外,该工作空间还建立了一种通过自动生成专门用于监控和促进重建过程的临时本地维基来浏览代谢模型及其元数据的方法。AuReMe 支持基于 RDF 数据库的探索和语义查询。我们举例说明了这个工作空间如何以集成的方式处理非模式生物(如极端微生物或真核藻类)的代谢重建。在相关应用中,后者的重建导致了对代谢途径的潜在进化见解。